A263025 n is the a(n)-th positive integer having its sum of divisors.
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 3, 1, 2, 2, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 2, 2, 1, 3, 1, 1, 1, 1, 2, 3, 1, 1, 1, 3, 1, 2, 1, 4, 2, 1, 2, 3, 1, 1, 2, 1, 1, 2, 1, 1, 1, 3, 2, 5, 1, 1, 1, 2, 1, 4, 2, 2, 1, 1, 2, 3, 1, 1, 1, 3
Offset: 1
Examples
The numbers with sum of divisors 72 are: 30, 46, 51, 55, 71. Hence: a(30)=1, a(46)=2, a(51)=3, a(55)=4, a(71)=5. More generally: the terms of each row of A085790 (say of length i) map to 1, 2, ..., i. Also: for any n>0, the n terms of the n-th row of A201915 map to 1, 2, ..., n.
Links
- Paul Tek, Table of n, a(n) for n = 1..25000
Programs
-
Maple
N:= 1000: # to get a(1) to a(N) Sigmas:= [seq(numtheory:-sigma(i),i=1..N)]: seq(numboccur(Sigmas[n], Sigmas[1..n]),n=1..N); # Robert Israel, Oct 09 2015
-
Mathematica
t = DivisorSigma[1, #] & /@ Range@ 10000; s = Position[t, #] & /@ Range@ Max@ t; Flatten[Position[s, #, {3}]][[2]] & /@ Range@ 87 (* Michael De Vlieger, Oct 09 2015 *)
-
PARI
cnt = vector(224); for (n=1, 87, s=sigma(n); cnt[s] = cnt[s]+1; print1(cnt[s] ", "))
Formula
a(A034885(k))=1 for k>0.
Comments