cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A263030 Decimal expansion of a constant related to A262876 and A262946 (negated).

Original entry on oeis.org

1, 8, 8, 7, 0, 8, 1, 9, 1, 9, 7, 9, 5, 2, 8, 5, 3, 2, 3, 7, 6, 4, 1, 0, 0, 9, 8, 6, 4, 9, 2, 0, 7, 9, 7, 3, 5, 9, 2, 1, 1, 4, 4, 6, 7, 2, 6, 8, 4, 2, 9, 2, 2, 1, 5, 0, 9, 4, 1, 7, 4, 3, 3, 7, 8, 2, 3, 2, 3, 7, 2, 1, 3, 7, 1, 8, 0, 6, 7, 4, 7, 1, 3, 9, 4, 6, 9, 7, 4, 1, 6, 1, 8, 7, 0, 1, 6, 2, 5, 8, 3, 2, 8, 1, 7, 9
Offset: 0

Views

Author

Vaclav Kotesovec, Oct 08 2015

Keywords

Examples

			-0.18870819197952853237641009864920797359211446726842922150941743378232...
		

Crossrefs

Programs

  • Mathematica
    NIntegrate[1/x*(Exp[-2*x]/(1 - Exp[-3*x])^2 - 1/(9*x^2) - 1/(9*x) + Exp[-x]/36), {x, 0, Infinity}, WorkingPrecision -> 120, MaxRecursion -> 100, PrecisionGoal -> 110]

Formula

Integral_{x=0..infinity} 1/x*(exp(-2*x)/(1 - exp(-3*x))^2 - 1/(9*x^2) - 1/(9*x) + exp(-x)/36) dx.
exp(3*(A263030+A263031)) = A^2 * Gamma(1/3) / (3^(11/12) * exp(1/6) * sqrt(2*Pi)), where A = A074962 is the Glaisher-Kinkelin constant.