A263054 Number of (n+1) X (2+1) 0..1 arrays with each row and column not divisible by 3, read as a binary number with top and left being the most significant bits.
2, 33, 142, 895, 4314, 22921, 113486, 577071, 2877562, 14455993, 72225582, 361607935, 1807659674, 9041669481, 45205690126, 226052092111, 1130241870522, 5651375017753, 28256745002222, 141284885366175, 706423516399834
Offset: 1
Keywords
Examples
Some solutions for n=4: ..1..0..1....0..0..1....1..0..0....1..0..0....1..0..1....1..0..1....1..0..0 ..1..1..1....1..0..0....0..1..0....0..1..0....1..0..1....0..0..1....1..0..1 ..1..1..1....1..1..1....1..1..1....0..1..0....0..0..1....1..1..1....0..1..0 ..1..1..1....0..0..1....1..0..0....0..1..0....0..1..0....1..0..0....0..0..1 ..1..0..1....1..1..1....0..1..0....1..0..1....1..0..0....0..0..1....1..1..1
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Column 2 of A263060.
Formula
Empirical: a(n) = 5*a(n-1) + 12*a(n-2) - 60*a(n-3) - 39*a(n-4) + 195*a(n-5) + 28*a(n-6) - 140*a(n-7).
Empirical g.f.: x*(2 + 23*x - 47*x^2 - 91*x^3 + 193*x^4 + 28*x^5 - 140*x^6) / ((1 - x)*(1 + x)*(1 - 2*x)*(1 + 2*x)*(1 - 5*x)*(1 - 7*x^2)). - Colin Barker, Jan 01 2019