cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A263060 T(n,k)=Number of (n+1)X(k+1) 0..1 arrays with each row and column not divisible by 3, read as a binary number with top and left being the most significant bits.

Original entry on oeis.org

2, 2, 2, 10, 33, 10, 10, 142, 142, 10, 42, 895, 1666, 895, 42, 42, 4314, 18390, 18390, 4314, 42, 170, 22921, 188370, 498597, 188370, 22921, 170, 170, 113486, 1941702, 10416690, 10416690, 1941702, 113486, 170, 682, 577071, 19499266, 232738767
Offset: 1

Views

Author

R. H. Hardin, Oct 08 2015

Keywords

Comments

Table starts
...2........2..........10.............10................42...................42
...2.......33.........142............895..............4314................22921
..10......142........1666..........18390............188370..............1941702
..10......895.......18390.........498597..........10416690............232738767
..42.....4314......188370.......10416690.........439260642..........19763462754
..42....22921.....1941702......232738767.......19763462754........1825928130193
.170...113486....19499266.....4880746710......830550961170......155157177242886
.170...577071...196698070...104100946101....35491321238130....13464303796343791
.682..2877562..1968558130..2185333961490..1490799705490242..1144373527121975682
.682.14455993.19732383462.46071984907935.62885673930539394.97776065732064546321

Examples

			Some solutions for n=3 k=4
..1..1..0..0..1....1..0..0..0..0....1..1..1..1..1....0..1..1..0..1
..0..1..0..1..0....1..0..1..0..0....0..1..0..0..0....1..0..1..1..0
..0..1..0..1..1....1..1..0..1..0....1..0..1..1..0....0..1..1..0..1
..0..0..1..1..1....0..0..0..0..1....1..1..1..0..0....0..1..0..0..0
		

Formula

Empirical for column k:
k=1: a(n) = a(n-1) +4*a(n-2) -4*a(n-3)
k=2: a(n) = 5*a(n-1) +12*a(n-2) -60*a(n-3) -39*a(n-4) +195*a(n-5) +28*a(n-6) -140*a(n-7)
k=3: [order 8]
k=4: [order 11]
k=5: [order 11]
k=6: [order 17]
k=7: [order 21]