cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A263061 Number of lattice paths from {5}^n to {0}^n using steps that decrement one or more components by one.

This page as a plain text file.
%I A263061 #9 Mar 23 2016 04:55:42
%S A263061 1,1,1683,32193253,3147728203035,1050740615666453461,
%T A263061 939073157252309315848923,1909946024633189859690880523893,
%U A263061 7868854300758955660834916406038038395,60169662022264019813634467045726478557798101,797656368265147949572521540584234236944835806750363
%N A263061 Number of lattice paths from {5}^n to {0}^n using steps that decrement one or more components by one.
%H A263061 Alois P. Heinz, <a href="/A263061/b263061.txt">Table of n, a(n) for n = 0..100</a>
%F A263061 From _Vaclav Kotesovec_, Mar 23 2016: (Start)
%F A263061 a(n) ~ 5^(4*n+1/2) * n!^5 / (Pi^2 * n^2 * 2^(3*n+5) * 3^n * (log(2))^(5*n+1)).
%F A263061 a(n) ~ sqrt(Pi) * 5^(4*n+1/2) * n^(5*n+1/2) / (2^(3*n+5/2) * 3^n * exp(5*n) * (log(2))^(5*n+1)).
%F A263061 (End)
%t A263061 With[{r = 5}, Flatten[{1, Table[Sum[Sum[(-1)^i*Binomial[j, i]*Binomial[j - i, r]^k, {i, 0, j}], {j, 0, k*r}], {k, 1, 12}]}]] (* _Vaclav Kotesovec_, Mar 22 2016 *)
%Y A263061 Row n=5 of A262809.
%K A263061 nonn
%O A263061 0,3
%A A263061 _Alois P. Heinz_, Oct 08 2015