cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A263064 Number of lattice paths from (n,n,n,n) to (0,0,0,0) using steps that decrement one or more components by one.

This page as a plain text file.
%I A263064 #13 Sep 09 2016 12:23:53
%S A263064 1,75,23917,10681263,5552351121,3147728203035,1887593866439485,
%T A263064 1177359342144641535,756051015055329306625,496505991344667030490635,
%U A263064 331910222316215755702672557,225110028217225196478861017775,154515942591851050758389232988689
%N A263064 Number of lattice paths from (n,n,n,n) to (0,0,0,0) using steps that decrement one or more components by one.
%C A263064 Also, the number of alignments for 4 sequences of length n each (Slowinski 1998).
%H A263064 Alois P. Heinz, <a href="/A263064/b263064.txt">Table of n, a(n) for n = 0..350</a>
%H A263064 J. B. Slowinski, <a href="http://www.neurociencias.org.ve/cont-cursos-laboratorio-de-neurociencias-luz/Slowinski1998%20phylogenetics.pdf">The Number of Multiple Alignments</a>, Molecular Phylogenetics and Evolution 10:2 (1998), 264-266. doi:<a href="http://dx.doi.org/10.1006/mpev.1998.0522">10.1006/mpev.1998.0522</a>
%F A263064 Recurrence: (n-1)*n^3*(864*n^4 - 6480*n^3 + 17763*n^2 - 21015*n + 9059)*a(n) = 15*(n-1)*(44928*n^7 - 404352*n^6 + 1459788*n^5 - 2712556*n^4 + 2772389*n^3 - 1538829*n^2 + 423093*n - 43506)*a(n-1) + (188352*n^8 - 2166048*n^7 + 10541118*n^6 - 28166748*n^5 + 44769259*n^4 - 42719172*n^3 + 23364582*n^2 - 6470217*n + 671094)*a(n-2) + 3*(n-2)*(3456*n^7 - 38016*n^6 + 169116*n^5 - 388336*n^4 + 486619*n^3 - 322644*n^2 + 100014*n - 10989)*a(n-3) - (n-3)^3*(n-2)*(864*n^4 - 3024*n^3 + 3507*n^2 - 1473*n + 191)*a(n-4). - _Vaclav Kotesovec_, Mar 22 2016
%F A263064 a(n) ~ sqrt(8 + 6*sqrt(2) + sqrt(140 + 99*sqrt(2))) * (195 + 138*sqrt(2) + 4*sqrt(4756 + 3363*sqrt(2)))^n / (8 * Pi^(3/2) * n^(3/2)). - _Vaclav Kotesovec_, Mar 22 2016
%t A263064 With[{k = 4}, Table[Sum[Sum[(-1)^i*Binomial[j, i]*Binomial[j - i, n]^k, {i, 0, j}], {j, 0, k*n}], {n, 0, 15}]] (* _Vaclav Kotesovec_, Mar 22 2016 *)
%Y A263064 Column k=4 of A262809.
%K A263064 nonn
%O A263064 0,2
%A A263064 _Alois P. Heinz_, Oct 08 2015