This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A263066 #9 Mar 23 2016 10:33:37 %S A263066 1,4683,308682013,35941784497263,5402040231378569121, %T A263066 939073157252309315848923,179349571255187154941191217629, %U A263066 36585008462723983824862891403150079,7835213566547395052871069325808866414849,1742079663955078309800553960117733249663480043 %N A263066 Number of lattice paths from {n}^6 to {0}^6 using steps that decrement one or more components by one. %H A263066 Alois P. Heinz, <a href="/A263066/b263066.txt">Table of n, a(n) for n = 0..100</a> %H A263066 Vaclav Kotesovec, <a href="/A263066/a263066.txt">Recurrence (of order 6)</a> %F A263066 a(n) ~ sqrt(c) * d^n / (Pi*n)^(5/2), where d = 296476.91626442008149098622814984912648229139426918084511... is the root of the equation 1 - 18*d - 5397*d^2 - 123696*d^3 + 321303*d^4 - 296478*d^5 + d^6 = 0 and c = 0.19491147281619801027873171908746401584984116403035035539868... is the root of the equation -1 - 4608*c - 7962624*c^2 - 6341787648*c^3 - 2283043553280*c^4 - 300578991243264*c^5 + 1603087953297408*c^6 = 0. - _Vaclav Kotesovec_, Mar 23 2016 %t A263066 With[{k = 6}, Table[Sum[Sum[(-1)^i*Binomial[j, i]*Binomial[j - i, n]^k, {i, 0, j}], {j, 0, k*n}], {n, 0, 15}]] (* _Vaclav Kotesovec_, Mar 22 2016 *) %Y A263066 Column k=6 of A262809. %K A263066 nonn %O A263066 0,2 %A A263066 _Alois P. Heinz_, Oct 08 2015