This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A263067 #11 Mar 23 2016 14:41:41 %S A263067 1,47293,58514835289,143743469278461361,480086443888959812703121, %T A263067 1909946024633189859690880523893, %U A263067 8508048612432263410111274212273801489,41020870889694863957061607086939138327565057,209691630817770382144439647416526247292909726379393 %N A263067 Number of lattice paths from {n}^7 to {0}^7 using steps that decrement one or more components by one. %H A263067 Alois P. Heinz, <a href="/A263067/b263067.txt">Table of n, a(n) for n = 0..100</a> %H A263067 Vaclav Kotesovec, <a href="/A263067/a263067.txt">Recurrence (of order 7)</a> %F A263067 a(n) ~ sqrt(c) * d^n / (Pi*n)^3, where d = 7553550.61983382187210690975164995019966376572879... is the root of the equation -1 + 7*d - 24031*d^2 - 374521*d^3 - 24850385*d^4 + 17978709*d^5 - 7553553*d^6 + d^7 = 0 and c = 0.1137319057755565367034882185733003109119819... is the root of the equation -1 - 12544*c - 61816832*c^2 - 151057858560*c^3 - 189486977777664*c^4 - 113186888059191296*c^5 - 25353862925258850304*c^6 + 231806746745223774208*c^7 = 0. - _Vaclav Kotesovec_, Mar 23 2016 %t A263067 With[{k = 7}, Table[Sum[Sum[(-1)^i*Binomial[j, i]*Binomial[j - i, n]^k, {i, 0, j}], {j, 0, k*n}], {n, 0, 15}]] (* _Vaclav Kotesovec_, Mar 22 2016 *) %Y A263067 Column k=7 of A262809. %K A263067 nonn %O A263067 0,2 %A A263067 _Alois P. Heinz_, Oct 08 2015