cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A263083 a(n) = largest k such that A049820(k) <= A262509(n).

This page as a plain text file.
%I A263083 #12 Oct 24 2015 12:25:08
%S A263083 119196,119196,119232,119280,119280,119952,119970,120120,120120,
%T A263083 120132,120132,120320,120330,120400,120432,120750,120780,120960,
%U A263083 120960,120960,120960,120960,121500,121600,121856,122112,122304,122304,122310,122310,122850,123000,123240,123240,123264,123264,123300,123840,24660720,24660720,24662484,24662484,24663804,24665130,24665130,24665472,24666048
%N A263083 a(n) = largest k such that A049820(k) <= A262509(n).
%C A263083 When a(n) > A262509(n), then a(n) is the "farthest immediate bypasser" of A262509(n) [the n-th "constriction point" in the tree generated by edge-relation A049820(child) = parent], bypassing it in the single A049820-step. In contrast, A263081(n) gives the farthest node (by necessity a leaf-node) which bypasses A262509(n) in multiple A049820-steps.
%C A263083 Sequence b(n) = A155043(A262509(n)) - A155043(a(n)) = A262508(n) - A155043(a(n)) gives the following terms: 395, 396, 354, 363, 364, 399, 390, 419, 422, 420, 421, 442, 430, 437, 460, 456, 498, 511, 512, 513, 515, 516, 506, 509, 533, 543, 564, 565, 557, 558, 591, 608, 612, 613, 614, 617, 617, 655, 3240, 3241, 3236, 3239, 3291, 3346, 3350, 3373, 3451, 3455, 2, 3598, 3637, 3605, 3674, 3688, 3689, 3748, 3749, 3792, 3793, 3794, 3800, 3803, 3858, 3843, 3902, 3947, 3985, 3986, ... which tells how many steps shorter trajectory there is to zero (using A049820) for those bypassers than for the constriction points themselves.
%H A263083 Antti Karttunen, <a href="/A263083/b263083.txt">Table of n, a(n) for n = 1..68</a>
%F A263083 a(n) = A262509(n)+A262908(n).
%Y A263083 Cf. A049820, A155043, A262509, A262908, A263081.
%K A263083 nonn
%O A263083 1,1
%A A263083 _Antti Karttunen_, Oct 11 2015