This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A263090 #17 Mar 16 2025 02:38:24 %S A263090 2,3,5,11,17,23,29,31,41,47,53,59,61,71,73,83,89,97,101,107,127,137, %T A263090 139,149,151,157,173,179,181,191,197,199,211,223,227,233,239,263,269, %U A263090 277,281,283,311,317,331,337,347,349,367,373,389,409,419,421,431,433,443,449,457,461,467,521,523,541,547,557,569,577,587,593,599,601,607,613,617,619,631,641,643 %N A263090 Primes p for which A049820(x) = p has a solution. %C A263090 Primes p that there is at least one such k for which k - d(k) = p, where d(k) is the number of divisors of k (A000005). %H A263090 Antti Karttunen, <a href="/A263090/b263090.txt">Table of n, a(n) for n = 1..7955</a> %e A263090 2 is present, as we have 6 - d(6) = 6 - 4 = 2. %e A263090 3 is present, as we have 5 - d(5) = 3. The same holds for all lesser twin primes (A001359). %t A263090 lim = 10000; s = Select[Sort@ DeleteDuplicates@ Table[n - DivisorSigma[0, n], {n, lim}], PrimeQ]; Take[s, 79] (* _Michael De Vlieger_, Oct 13 2015 *) %o A263090 (PARI) %o A263090 allocatemem(123456789); %o A263090 uplim1 = 2162160 + 320; \\ = A002182(41) + A002183(41). %o A263090 v060990 = vector(uplim1); %o A263090 for(n=3, uplim1, v060990[n-numdiv(n)]++); %o A263090 A060990 = n -> if(!n,2,v060990[n]); %o A263090 n=0; forprime(p=2, 131071, if((A060990(p) > 0), n++; write("b263090.txt", n, " ", p))); %o A263090 (Scheme) %o A263090 ;; With _Antti Karttunen_'s IntSeq-library. %o A263090 (define A263090 (MATCHING-POS 1 1 (lambda (n) (and (= 1 (A010051 n)) (not (zero? (A060990 n))))))) %Y A263090 Complement among primes: A263091. %Y A263090 Intersection of A000040 and A236562. %Y A263090 Cf. A001359 (a subsequence). %Y A263090 Cf. A000005, A049820, A060990. %Y A263090 Cf. also A263094. %K A263090 nonn %O A263090 1,1 %A A263090 _Antti Karttunen_, Oct 11 2015