A263100 Number of ordered pairs (k, m) with k > 0 and m > 0 such that n = pi(k^2) + pi(m^2/2), where pi(x) denotes the number of primes not exceeding x.
1, 2, 1, 3, 2, 3, 3, 2, 4, 2, 6, 2, 5, 2, 5, 4, 4, 4, 4, 5, 3, 5, 5, 4, 4, 6, 6, 1, 7, 4, 6, 4, 4, 7, 6, 4, 5, 5, 5, 6, 6, 4, 6, 3, 7, 6, 5, 6, 6, 6, 5, 5, 6, 4, 7, 8, 4, 3, 10, 2, 6, 6, 6, 6, 7, 5, 5, 9, 3, 6, 8, 6, 7, 5, 5, 6, 7, 7, 8, 3, 9, 3, 10, 2, 7, 9, 7, 2, 7, 8, 5, 8, 4, 6, 9, 5, 7, 6, 5, 7
Offset: 1
Keywords
Examples
a(1) = 1 since 1 = 0 + 1 = pi(1^2) + pi(2^2/2). a(3) = 1 since 3 = 2 + 1 = pi(2^2) + pi(2^2/2). a(28) = 1 since 28 = 11 + 17 = pi(6^2) + pi(11^2/2).
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
s[n_]:=s[n]=PrimePi[n^2] t[n_]:=t[n]=PrimePi[n^2/2] Do[r=0; Do[If[s[k]>n, Goto[bb]]; Do[If[t[j]>n-s[k], Goto[aa]]; If[t[j]==n-s[k], r=r+1]; Continue, {j, 1, n-s[k]+1}]; Label[aa]; Continue, {k, 1, n}]; Label[bb]; Print[n, " ", r]; Continue, {n,1,100}]
Comments