A263120 Number of (n+3)X(2+3) 0..1 arrays with each row divisible by 15 and column not divisible by 15, read as a binary number with top and left being the most significant bits.
36, 148, 522, 1708, 5124, 15640, 47602, 144236, 432708, 1295524, 3883594, 11649676, 34949028, 104703688, 313818418, 940969804, 2822909412, 8465899188, 25390861962, 76159749740, 228479249220, 685409187320, 2056136698226
Offset: 1
Keywords
Examples
Some solutions for n=4 ..1..1..1..1..0....1..1..1..1..0....0..0..0..0..0....0..1..1..1..1 ..1..1..1..1..0....0..0..0..0..0....0..1..1..1..1....1..1..1..1..0 ..0..0..0..0..0....1..1..1..1..0....0..0..0..0..0....1..1..1..1..0 ..0..1..1..1..1....0..1..1..1..1....1..1..1..1..0....0..1..1..1..1 ..1..1..1..1..0....0..0..0..0..0....1..1..1..1..0....1..1..1..1..0 ..1..1..1..1..0....1..1..1..1..0....0..1..1..1..1....1..1..1..1..0 ..1..1..1..1..0....1..1..1..1..0....1..1..1..1..0....0..1..1..1..1
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Cf. A263124.
Formula
Empirical: a(n) = 4*a(n-1) -a(n-2) -8*a(n-3) +48*a(n-4) -168*a(n-5) +48*a(n-6) +312*a(n-7) -955*a(n-8) +2884*a(n-9) -955*a(n-10) -4832*a(n-11) +7632*a(n-12) -16032*a(n-13) +7632*a(n-14) +17568*a(n-15) +4886*a(n-16) -72248*a(n-17) +4886*a(n-18) +197200*a(n-19) -366336*a(n-20) +873744*a(n-21) -366336*a(n-22) -1155888*a(n-23) +1014058*a(n-24) -588568*a(n-25) +1014058*a(n-26) -2290528*a(n-27) +6020160*a(n-28) -17209056*a(n-29) +6020160*a(n-30) +27546528*a(n-31) -27604133*a(n-32) +27776948*a(n-33) -27604133*a(n-34) +27085688*a(n-35) -75797424*a(n-36) +221932632*a(n-37) -75797424*a(n-38) -362608200*a(n-39) +362785825*a(n-40) -363318700*a(n-41) +362785825*a(n-42) -361187200*a(n-43) +406335600*a(n-44) -541780800*a(n-45) +406335600*a(n-46)
Comments