This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A263130 #14 Oct 27 2015 21:23:18 %S A263130 1,5,21,17,633,23,36153,65,93,635,443122713,71,81474226713,36155,645, %T A263130 113,6069010670156313,95,2318037293294156313,641,36165,443122715, %U A263130 595774037991797891660313,119,4233,81474226715,453,36161,256727294482662730300616548940313,647 %N A263130 Least number such that the product of its digits in factorial base is n. %C A263130 The product of digits in factorial base is given by A208575. %C A263130 All terms are odd. %C A263130 Each prime number sets a new record. %C A263130 a(p) = p*(p!) + Sum_{k=1..p-1} k! for any prime p. %C A263130 a(n!) = A033312(n+1) for any n>0. %C A263130 A208576(a(n)) = A208576(n)+1 for any n>1. %H A263130 Paul Tek, <a href="/A263130/b263130.txt">Table of n, a(n) for n = 1..448</a> %H A263130 Paul Tek, <a href="/A263130/a263130.pl.txt">PERL program for this sequence</a> %e A263130 The first terms of the sequence are: %e A263130 +----+-------------+----------------------------+ %e A263130 | n | a(n) | a(n) in factorial base | %e A263130 +----+-------------+----------------------------+ %e A263130 | 1 | 1 | 1 | %e A263130 | 2 | 5 | 2_1 | %e A263130 | 3 | 21 | 3_1_1 | %e A263130 | 4 | 17 | 2_2_1 | %e A263130 | 5 | 633 | 5_1_1_1_1 | %e A263130 | 6 | 23 | 3_2_1 | %e A263130 | 7 | 36153 | 7_1_1_1_1_1_1 | %e A263130 | 8 | 65 | 2_2_2_1 | %e A263130 | 9 | 93 | 3_3_1_1 | %e A263130 | 10 | 635 | 5_1_1_2_1 | %e A263130 | 11 | 443122713 | 11_1_1_1_1_1_1_1_1_1_1 | %e A263130 | 12 | 71 | 2_3_2_1 | %e A263130 | 13 | 81474226713 | 13_1_1_1_1_1_1_1_1_1_1_1_1 | %e A263130 | 14 | 36155 | 7_1_1_1_1_2_1 | %e A263130 | 15 | 645 | 5_1_3_1_1 | %e A263130 | 16 | 113 | 4_2_2_1 | %e A263130 +----+-------------+----------------------------+ %t A263130 f[n_] := Block[{d = Divisors@ n, g, k, m = {1}}, g[x_] := Flatten[Table[#1, {#2}] & @@@ FactorInteger@ x]; Do[k = Max@ Select[d, # <= i &]; If[! IntegerQ@ k, AppendTo[m, 1], d = Divisors[Last[d]/k]; AppendTo[m, k]]; If[d == {1}, Break[]], {i, 2, n}]; Reverse@ m]; Table[FromDigits[#, MixedRadix[Reverse@ Range[2, Length@ #]]] &@ f@ n, {n, 30}] (* _Michael De Vlieger_, Oct 12 2015, Version 10.2 *) %Y A263130 Cf. A033312, A200748, A208277, A208575, A208576. %K A263130 nonn,base %O A263130 1,2 %A A263130 _Paul Tek_, Oct 10 2015