cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A263132 Positive values of m such that binomial(4*m - 1, m) is odd.

This page as a plain text file.
%I A263132 #42 Jun 16 2025 00:33:26
%S A263132 1,2,3,4,6,8,11,12,16,22,24,32,43,44,48,64,86,88,96,128,171,172,176,
%T A263132 192,256,342,344,352,384,512,683,684,688,704,768,1024,1366,1368,1376,
%U A263132 1408,1536,2048,2731,2732,2736,2752,2816,3072,4096,5462,5464,5472,5504
%N A263132 Positive values of m such that binomial(4*m - 1, m) is odd.
%C A263132 This sequence, when viewed as a set, equals the set of numbers of the form 4^n * ceiling(2^k/3) for n >= 0, k >= 1, i.e., the product subset in Z of A000302 and A005578 regarded as sets. See the example below.
%C A263132 Equivalently, this sequence, when viewed as a set, equals the set of numbers of the form 2^n * (2^(2*k + 1) + 1)/3 for n,k >= 0, i.e., the product subset in Z of A000079 and A007583 regarded as sets. See the example below.
%C A263132 2*a(n) gives the values of m such that binomial(4*m - 2,m) is odd. 4*a(n) gives the values of m such that binomial(4*m - 3,m) is odd (other than m = 1) and also the values of m such that binomial(4*m - 4,m) is odd.
%F A263132 a(n) = A263133(n) + 1.
%F A263132 m is a term if and only if m AND NOT (4*m-1) = 0 where AND and NOT are bitwise operators. - _Chai Wah Wu_, Feb 07 2016
%F A263132 a(n) = (2^A000267(n-1) + 2^A384688(n-1)) / 3. - _Kevin Ryde_, Jun 14 2025
%e A263132 1) Notice how this sequence can be read from Table 1 below by moving through the table in a sequence of 'knight moves' (1 down and 2 to the left) starting from the first row. For example, starting at 11 on the top row we move in a series of knights moves 11 -> 12 -> 16, then return to the top row at 22 and move 22 -> 24 -> 32, return to the top row at 43 and move 43 -> 44 -> 48 -> 64, then return to top row at 86 and so on.
%e A263132 ........................................................
%e A263132 .   Table 1: 4^n * ceiling(2^k/3) for n >= 0, k >= 1   .
%e A263132 ........................................................
%e A263132 n\k|   1    2    3    4     5     6    7    8     9
%e A263132 ---+----------------------------------------------------
%e A263132 0  |   1    2    3    6    11    22   43   86   171 ...
%e A263132 1  |   4    8   12   24    44    88  172  ...
%e A263132 2  |  16   32   48   96   176    ...
%e A263132 3  |  64  128  192  ...
%e A263132 4  | 256  ...
%e A263132 ...
%e A263132 2) Notice how this sequence can be read from Table 2 below in a sequence of 'knight moves' (2 down and 1 to the left) starting from the first two rows. For example, starting at 43 in the first row we jump 43 -> 44 -> 48 -> 64, then return to the second row at 86 and jump 86 -> 88 -> 96 -> 128, followed by 171 -> 172 -> 176 -> 192 -> 256, and so on.
%e A263132 ....................................................
%e A263132 .   Table 2: 2^n * (2^(2*k + 1) + 1)/3, n,k >= 0   .
%e A263132 ....................................................
%e A263132 n\k|   0    1     2     3      4      5
%e A263132 ---+----------------------------------------------
%e A263132 0  |   1    3    11    43    171    683  ...
%e A263132 1  |   2    6    22    86    342   1366  ...
%e A263132 2  |   4   12    44   172    684   2732  ...
%e A263132 3  |   8   24    88   344   1368   5464  ...
%e A263132 4  |  16   48   176   688   2736  10928  ...
%e A263132 5  |  32   96   352  1376   5472  21856  ...
%e A263132 6  |  64  192   704  2752  10944  43712  ...
%e A263132 7  | 128  384  1408  5504  21888  87424  ...
%e A263132 8  | 256 ...
%p A263132 for n from 1 to 5000 do if mod(binomial(4*n-1, n), 2) = 1 then print(n) end if end do;
%t A263132 Select[Range[6000],OddQ[Binomial[4#-1,#]]&] (* _Harvey P. Dale_, Dec 26 2015 *)
%o A263132 (PARI) for(n=1, 1e4, if (binomial(4*n-1, n) % 2 == 1, print1(n", "))) \\ _Altug Alkan_, Oct 11 2015
%o A263132 (PARI) a(n) = my(r,s=sqrtint(4*n-3,&r)); (1<<s + 1<<(r\/2))/3; \\ _Kevin Ryde_, Jun 14 2025
%o A263132 (Magma) [n: n in [1..6000] | Binomial(4*n-1, n) mod 2 eq 1]; // _Vincenzo Librandi_, Oct 12 2015
%o A263132 (Python)
%o A263132 A263132_list = [m for m in range(1,10**6) if not ~(4*m-1) & m] # _Chai Wah Wu_, Feb 07 2016
%Y A263132 Cf. A000079, A000267, A000302, A005578, A007583, A048716, A384688.
%Y A263132 Other odd binomials: A002450 (4*m+1,m), A020988 (4*m+2,m), A263133 (4*m+3,m), A080674 (4*m+4,m), A118113 (3*m-2,m), A003714 (3*m,m).
%K A263132 nonn,easy
%O A263132 1,2
%A A263132 _Peter Bala_, Oct 10 2015
%E A263132 More terms from _Vincenzo Librandi_, Oct 12 2015