This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A263146 #8 Oct 12 2015 10:32:41 %S A263146 1,0,0,1,0,0,0,0,2,0,0,2,0,3,0,0,4,0,4,1,0,10,0,5,6,0,16,0,6,14,0,28, %T A263146 3,7,32,0,40,10,8,63,0,60,33,9,112,3,80,74,10,187,14,110,161,11,300, %U A263146 46,140,308,13,455,120,182,568,25,672,283,224,968,55,963 %N A263146 Expansion of Product_{k>=1} (1+x^(5*k-2))^k. %H A263146 Vaclav Kotesovec, <a href="/A263146/b263146.txt">Table of n, a(n) for n = 0..10000</a> %H A263146 Vaclav Kotesovec, <a href="http://arxiv.org/abs/1509.08708">A method of finding the asymptotics of q-series based on the convolution of generating functions</a>, arXiv:1509.08708 [math.CO], Sep 30 2015 %F A263146 G.f.: exp(Sum_{j>=1} (-1)^(j+1)/j*x^(3*j)/(1 - x^(5*j))^2). %F A263146 a(n) ~ 2^(33/100) * 3^(2/3) * 5^(2/3) * Zeta(3)^(1/6) * exp(-Pi^4/(8100*Zeta(3)) + Pi^2 * 3^(2/3) * 2^(1/3) * 5^(2/3) * n^(1/3) / (450*Zeta(3)^(1/3)) + Zeta(3)^(1/3) * 3^(4/3) * 2^(2/3) * 5^(1/3) * n^(2/3) / 20) / (30 * sqrt(Pi) * n^(2/3)). %t A263146 nmax = 100; CoefficientList[Series[Product[(1+x^(5k-2))^k, {k, 1, nmax}], {x, 0, nmax}], x] %t A263146 nmax = 100; CoefficientList[Series[E^Sum[(-1)^(j+1)/j*x^(3*j)/(1 - x^(5*j))^2, {j, 1, nmax}], {x, 0, nmax}], x] %Y A263146 Cf. A263145, A263147, A263148, A263142, A262879. %K A263146 nonn %O A263146 0,9 %A A263146 _Vaclav Kotesovec_, Oct 10 2015