cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A263170 a(n) = (Sum_{k=1..n} prime(k))^3 - (Sum_{k=1..n} prime(k)^3).

Original entry on oeis.org

0, 90, 840, 4410, 20118, 64890, 186168, 440730, 972030, 2094330, 4013850, 7512570, 13279548, 21906810, 34902498, 54772410, 84444690, 124785210, 181983378, 259292154, 358930146, 492406650, 664548816, 889272570, 1186319550, 1559209530, 2012668266, 2568943290, 3232452450, 4031692410
Offset: 1

Views

Author

Altug Alkan, Oct 11 2015

Keywords

Comments

Obviously, a(n) is always an even number.
All a(n) are divisible by 6. - Robert Israel, Oct 16 2020

Examples

			For n = 2, a(2) = (2 + 3)^3 - (2^3 + 3^3) = 90.
		

Crossrefs

Cf. A007504, A098999. 3D analog of A065595.

Programs

  • Maple
    A263170 := proc(n)
        su := add(ithprime(i),i=1..n) ;
        su3 := add(ithprime(i)^3,i=1..n) ;
        su^3-su3 ;
    end proc: # R. J. Mathar, Oct 21 2015
  • Mathematica
    Table[Sum[Prime@ k, {k, n}]^3 - Sum[Prime[k]^3, {k, n}], {n, 30}] (* Michael De Vlieger, Oct 19 2015 *)
  • PARI
    a(n) = sum(k=1, n, prime(k))^3 - sum(k=1, n, prime(k)^3);

Formula

a(n) = A007504(n)^3 - A098999(n).
a(n) mod 2 = 0.