A263181 Decimal expansion of a constant related to A263144.
1, 8, 6, 3, 8, 2, 6, 9, 0, 6, 2, 4, 7, 5, 2, 6, 3, 0, 3, 9, 1, 3, 6, 8, 3, 6, 4, 6, 2, 9, 9, 1, 8, 4, 8, 3, 3, 8, 4, 4, 2, 4, 0, 8, 6, 3, 4, 1, 7, 6, 4, 4, 0, 9, 1, 4, 6, 9, 2, 3, 6, 8, 6, 0, 4, 1, 9, 8, 8, 7, 2, 9, 6, 2, 8, 8, 0, 7, 2, 5, 4, 4, 2, 9, 1, 6, 5, 2, 2, 8, 7, 3, 4, 4, 0, 1, 9, 4, 3, 6, 4, 9, 4, 4, 1, 8
Offset: 0
Examples
0.1863826906247526303913683646299184833844240863417644091469236860419...
Programs
-
Mathematica
NIntegrate[E^(-x)/(1-E^(-5*x))^2/x - 1/(25*x^3) - 4/(25*x^2) - 71*E^(-x)/(300*x), {x, 0, Infinity}, WorkingPrecision -> 120, MaxRecursion -> 100, PrecisionGoal -> 110]
Formula
Integral_{x=0..infinity} exp(-x)/(x*(1 - exp(-5*x))^2) - 1/(25*x^3) - 4/(25*x^2) - 71/(300*x*exp(x)) dx.
A263178 + A263179 + A263180 + A263181 = (log(Gamma(1/5)^3 / ((1+sqrt(5)) * Pi * Gamma(3/5) * 5^(29/12))) - 4*Zeta'(-1))/5 = -0.2745843324986204888923185745... . - Vaclav Kotesovec, Oct 12 2015