cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A263192 Decimal expansion of Sum_{n >= 1} cos(n)/sqrt(n), negated.

This page as a plain text file.
%I A263192 #26 Apr 17 2018 17:30:04
%S A263192 1,9,4,1,0,8,9,3,5,0,9,2,1,8,2,0,4,9,7,3,9,1,4,9,2,4,4,9,2,8,1,9,4,7,
%T A263192 2,6,6,3,5,3,2,0,5,5,2,6,3,4,0,4,7,8,1,5,4,0,2,3,9,8,3,7,6,6,0,9,5,6,
%U A263192 6,6,8,3,7,2,6,2,5,5,4,7,6,4,0,0,6,5,3,1,8,9,6,4,9,6,5,5,2,4,7,0,1,2,2,6,8,3,5,1,9
%N A263192 Decimal expansion of Sum_{n >= 1} cos(n)/sqrt(n), negated.
%C A263192 A slowly convergent series. It may be efficiently computed via the Hurwitz zeta-function (see formula below).
%H A263192 G. C. Greubel, <a href="/A263192/b263192.txt">Table of n, a(n) for n = 0..10000</a>
%H A263192 Iaroslav V. Blagouchine, <a href="http://dx.doi.org/10.1016/j.jnt.2014.08.009">A theorem for the closed-form evaluation of the first generalized Stieltjes constant at rational arguments and some related summations</a>, Journal of Number Theory (Elsevier), vol. 148, pp. 537-592 & vol. 151, pp. 276-277, 2015. <a href="http://arxiv.org/abs/1401.3724">arXiv version</a>, arXiv:1401.3724 [math.NT].
%F A263192 (Zeta(1/2, 1/(2*Pi)) + Zeta(1/2, 1-1/(2*Pi)))/2, see formula (26) in the reference.
%e A263192 -0.1941089350921820497391492449281947266353205526340478...
%p A263192 evalf(1/2*(Zeta(0, 1/2, 1/(2*Pi)) + Zeta(0, 1/2, 1-1/(2*Pi))), 120);
%t A263192 N[(Zeta[1/2, 1/(2*Pi)] + Zeta[1/2, 1 - 1/(2*Pi)])/2, 200]
%t A263192 RealDigits[Re[(1/2)*(PolyLog[1/2, E^(-I)] + PolyLog[1/2, E^I])], 10, 109][[1]] (* _Vaclav Kotesovec_, Oct 31 2015 *)
%o A263192 (PARI) zetahurwitz(1/2, 1/Pi/2)/2 + zetahurwitz(1/2, 1-1/Pi/2)/2 \\ _Charles R Greathouse IV_, Jan 30 2018
%Y A263192 Cf. A113024, A121225, A263193.
%K A263192 nonn,cons
%O A263192 0,2
%A A263192 _Iaroslav V. Blagouchine_, Oct 11 2015