cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A263202 Decimal expansion of the lowest Dirichlet eigenvalue of the Laplacian within the unit-edged regular hexagon.

This page as a plain text file.
%I A263202 #22 Apr 07 2017 11:38:57
%S A263202 7,1,5,5,3,3,9,1,3,3,9,2,6,0,5,5,1,2,8,2,1,0,0,1,7,6,1,6,8,3,3,1,3,9,
%T A263202 2,8,0,6,6,9,1,9,9,5,8,5,7,7,6,9,7,7,9,2,0,3,4,9,4,2,4,9,0,4,7,4,4,3,
%U A263202 3,3,1,2,2,5,0,9,2,5,3,3,7,5,4,8,7,5
%N A263202 Decimal expansion of the lowest Dirichlet eigenvalue of the Laplacian within the unit-edged regular hexagon.
%H A263202 Robert Stephen Jones, <a href="/A263202/b263202.txt">Table of n, a(n) for n = 1..1001</a>
%H A263202 L. Bauer and E. L. Reiss, <a href="http://www.researchgate.net/publication/202846469_Cutoff_Wavenumbers_and_Modes_of_Hexagonal_Waveguides">Cutoff wavenumbers and modes of hexagonal waveguides</a>, SIAM J. of Appl. Math., 35 (1978), 508-514. (Note: 6-digit results.)
%H A263202 L. M. Cureton and J. R. Kuttler, <a href="http://dx.doi.org/10.1006/jsvi.1998.1919">Eigenvalues of the Laplacian on regular polygons and polygons resulting from their dissection</a>, Journal of Sound and Vibration, 220 (1998), 83-98. (Note: Table 2 presents their 8-digit digit results.)
%H A263202 Robert S. Jones, <a href="http://arxiv.org/abs/1602.08636">Computing ultra-precise eigenvalues of the Laplacian within polygons</a>, arXiv preprint arXiv:1602.08636, 2016
%e A263202 7.1553391339260551282100176168331392806691995857769779...
%Y A263202 Cf. A262701 (L-shape) and A262823 (regular pentagon).
%K A263202 nonn,cons
%O A263202 1,1
%A A263202 _Robert Stephen Jones_, Oct 12 2015