cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A263235 Number of triangular number parts in all partitions of n.

This page as a plain text file.
%I A263235 #17 Jun 12 2025 10:23:33
%S A263235 0,1,2,5,8,14,24,37,56,85,124,178,254,354,489,671,907,1217,1624,2144,
%T A263235 2815,3675,4764,6142,7885,10062,12788,16183,20391,25590,32013,39883,
%U A263235 49536,61326,75688,93129,114296,139856,170718,207857,252476,305938,369946,446314,537379
%N A263235 Number of triangular number parts in all partitions of n.
%C A263235 a(n) = Sum_{k=0..n} k*A263234(n,k).
%H A263235 Vaclav Kotesovec, <a href="/A263235/b263235.txt">Table of n, a(n) for n = 0..10000</a> (terms 0..1000 from Alois P. Heinz)
%F A263235 G.f.: Sum_{i>0} x^h(i)/(1-x^h(i)) / Product_{i>0} 1-x^i, where h(i) = i*(i+1)/2.
%e A263235 a(4) = 8 because the partitions of 4 are  [4], [3',1'], [2,2], [2,1',1'], and [1',1',1',1'], where the triangular number parts are marked.
%p A263235 h:= proc (i) options operator, arrow: (1/2)*i*(i+1) end proc: g := (sum(x^h(i)/(1-x^h(i)), i = 1..100))/(product(1-x^i, i = 1..100)): hser:= series(g, x = 0, 55): seq(coeff(hser, x, n), n = 0..50);
%p A263235 # second Maple program:
%p A263235 b:= proc(n, i) option remember; `if`(n=0, [1, 0],
%p A263235       `if`(i<1, 0, b(n, i-1) +`if`(i>n, 0, (p-> p+
%p A263235       `if`(issqr(8*i+1), [0, p[1]], 0))(b(n-i, i)))))
%p A263235     end:
%p A263235 a:= n-> b(n$2)[2]:
%p A263235 seq(a(n), n=0..60);  # _Alois P. Heinz_, Nov 13 2015
%t A263235 b[n_, i_] := b[n, i] = If[n==0, {1, 0}, If[i<1, 0, b[n, i-1] + If[i>n, 0, Function[p, p + If[IntegerQ@Sqrt[8*i+1], {0, p[[1]]}, 0]][b[n-i, i]]]]]; a[n_] := b[n, n][[2]]; Table[a[n], {n, 0, 60}] (* _Jean-François Alcover_, Feb 08 2017, after _Alois P. Heinz_ *)
%Y A263235 Cf. A263234, A309536.
%K A263235 nonn
%O A263235 0,3
%A A263235 _Emeric Deutsch_, Nov 12 2015