This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A263246 #17 Sep 11 2022 09:28:30 %S A263246 1,1,-11,-491,-11159,460681,103577629,8160790429,-624333860399, %T A263246 -386787409545839,-68810049201689531,6999828208693648549, %U A263246 9872674440874152431161,3255253386897615662908441,-346248578699462435167833491,-1072454627614122049417452882131,-584579592415141205182370782224479,47874474639430619859527348515679521 %N A263246 Expansion of e.g.f.: sin(r*x) / sqrt(1 + cos(r*x)^2) where r = sqrt(2), odd powers only. %H A263246 G. C. Greubel, <a href="/A263246/b263246.txt">Table of n, a(n) for n = 1..234</a> %F A263246 a(n) = - A101922(n). - _Michel Marcus_, Sep 11 2022 %e A263246 E.g.f.: S(x) = x + x^3/3! - 11*x^5/5! - 491*x^7/7! - 11159*x^9/9! + 460681*x^11/11! + 103577629*x^13/13! + 8160790429*x^15/15! +... %e A263246 Related expansions. %e A263246 S(x)^2 = 2*x^2/2! + 8*x^4/4! - 112*x^6/6! - 9088*x^8/8! - 310528*x^10/10! + 14701568*x^12/12! +...+ -A263249(n)*x^(2*n)/(2*n)! +... %e A263246 sqrt(1 - S(x)^2) = 1 - x^2/2! - 7*x^4/4! - 49*x^6/6! + 1457*x^8/8! + 148799*x^10/10! + 6409193*x^12/12! +...+ A263247(n)*x^(2*n)/(2*n)! +... %e A263246 sqrt(1 + S(x)^2) = 1 + x^2/2! + x^4/4! - 71*x^6/6! - 2591*x^8/8! - 23759*x^10/10! + 7872481*x^12/12! +...+ A263248(2*n)*x^(2*n)/(2*n)! +... %t A263246 r:= Sqrt[2]; With[{nmax = 500}, CoefficientList[Series[Sin[r*x]/Sqrt[1 + Cos[r*x]^2], {x, 0, nmax}], x]*Range[0, nmax - 1]!][[2 ;; -1 ;; 2]] (* _G. C. Greubel_, Jul 27 2018 *) %o A263246 (PARI) {a(n) = local(S=x,C=1,D=1,ox=O(x^(2*n+2))); for(i=1,2*n+1, S = intformal(C*D^2 +ox); C = 1 - intformal(S*D^2); D = 1 + intformal(S*C*D);); (2*n+1)!*polcoeff(S, 2*n+1)} %o A263246 for(n=0,20,print1(a(n),", ")) %Y A263246 Cf. A263247, A263248, A263249. %Y A263246 Cf. A101922. %K A263246 sign %O A263246 1,3 %A A263246 _Paul D. Hanna_, Oct 13 2015