cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A263297 The greater of bigomega(n) and maximal prime index in the prime factorization of n.

This page as a plain text file.
%I A263297 #46 Jan 18 2020 18:22:31
%S A263297 0,1,2,2,3,2,4,3,2,3,5,3,6,4,3,4,7,3,8,3,4,5,9,4,3,6,3,4,10,3,11,5,5,
%T A263297 7,4,4,12,8,6,4,13,4,14,5,3,9,15,5,4,3,7,6,16,4,5,4,8,10,17,4,18,11,4,
%U A263297 6,6,5,19,7,9,4,20,5,21,12,3,8,5,6,22,5
%N A263297 The greater of bigomega(n) and maximal prime index in the prime factorization of n.
%C A263297 Also: minimal m such that n is the product of at most m primes not exceeding prime(m). (Here the primes do not need to be distinct; cf. A263323.)
%C A263297 By convention, a(1)=0, as 1 is the empty product.
%C A263297 Those n with a(n) <= k fill a k-simplex whose 1-sides span from 0 to k.
%C A263297 For a similar construction with distinct primes (hypercube), see A263323.
%C A263297 Each nonnegative integer occurs finitely often; in particular:
%C A263297 - Terms a(n) <= k occur A000984(k) = (2*k)!/(k!)^2 times.
%C A263297 - The term a(n) = 0 occurs exactly once.
%C A263297 - The term a(n) = k > 0 occurs exactly A051924(k) = (3*k-2)*C(k-1) times, where C(k)=A000108(k) are Catalan numbers.
%H A263297 Antti Karttunen, <a href="/A263297/b263297.txt">Table of n, a(n) for n = 1..20000</a>
%H A263297 <a href="/index/Pri#prime_indices">Index entries for sequences computed from indices in prime factorization</a>
%F A263297 a(n) = max(A001222(n), A061395(n)).
%F A263297 a(n) <= pi(n), with equality when n is 1 or prime.
%e A263297 a(6)=2 because 6 is the product of 2 primes (2*3), each not exceeding prime(2)=3.
%e A263297 a(8)=3 because 8 is the product of 3 primes (2*2*2), each not exceeding prime(3)=5.
%e A263297 a(11)=5 because 11 is prime(5).
%p A263297 seq(`if`(n=1,0,max(pi(max(factorset(n))),bigomega(n))),n=1..80); # _Peter Luschny_, Oct 15 2015
%t A263297 f[n_] := Max[ PrimePi[ Max @@ First /@ FactorInteger@n], Plus @@ Last /@ FactorInteger@n]; Array[f, 80]
%o A263297 (PARI) a(n)=if(n<2, return(0)); my(f=factor(n)); max(vecsum(f[,2]), primepi(f[#f~,1])) \\ _Charles R Greathouse IV_, Oct 13 2015
%Y A263297 Cf. A000108, A000984, A001222, A051924, A061395, A263323, A325225, A331296 (ordinal transform), A331297.
%K A263297 nonn
%O A263297 1,3
%A A263297 _Alexei Kourbatov_, Oct 13 2015