A263317 Least prime p > n such that the numbers sigma(k^2)/k^2 (k = 1,...,n) are pairwise incongruent modulo p, where sigma(m) is the sum of the divisors of m.
2, 5, 5, 7, 7, 29, 37, 37, 37, 37, 37, 43, 43, 43, 53, 79, 101, 101, 101, 101, 101, 101, 101, 101, 131, 131, 131, 131, 131, 131, 131, 173, 173, 173, 173, 173, 173, 173, 173, 173, 173, 173, 173, 173, 173, 173, 173, 173, 173, 283, 317, 389, 389, 389, 389, 389, 389, 389, 389, 389
Offset: 1
Keywords
Examples
a(1) = 2 since 2 is the least prime greater than sigma(1^2)/1^2 = 1. a(2) = 5 since sigma(1^2)/1^2 = 1 and sigma(2^2)/2^2 = 7/4 are incongruent modulo the prime 5 > 2, but 1 is congruent to 7/4 modulo the prime 3.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 1..2000
Programs
-
Mathematica
rMod[m_,n_]:=rMod[m,n]=Mod[Numerator[m]*PowerMod[Denominator[m],-1,n],n,-n/2] f[n_]:=f[n]=DivisorSigma[1,n^2]/n^2 Le[n_,m_]:=Le[m,n]=Length[Union[Table[rMod[f[k],Prime[m]],{k,1,n}]]] Do[n=1;m=1;Label[aa];If[m>PrimePi[n]&&Le[n,m]==n,Goto[bb],m=m+1;Goto[aa]];Label[bb];Print[n," ",Prime[m]];If[n<60,n=n+1;Goto[aa]]]
Extensions
Definition corrected by Omar E. Pol, Oct 24 2015
Comments