This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A263319 #25 Sep 08 2022 08:46:14 %S A263319 0,1,4,6,18,11,45,36,66,50,150,68,234,132,192,216,488,198,648,312,510, %T A263319 460,1089,420,1140,732,1161,822,2044,616,2430,1376,1810,1528,2400, %U A263319 1260,3942,2052,2880,2008,5260,1644,5943,2950,3672,3509,7567,2736,7497,3670 %N A263319 a(n) = pi(n^2)*phi(n)/2, where pi(x) denotes the number of primes not exceeding x, and phi(.) is Euler's totient function given by A000010. %C A263319 Conjecture: (i) All the terms of this sequence are pairwise distinct. %C A263319 (ii) All the numbers phi(n)*pi(n*(n-1)) (n = 1,2,3,...) are pairwise distinct. %C A263319 (iii) All the numbers phi(n^2)*pi(n^2) = n*phi(n)*pi(n^2) (n = 1,2,3,...) are pairwise distinct. %C A263319 We have checked this conjecture via Mathematica. For example, we have verified that a(n) (n = 1..4*10^5) are indeed pairwise distinct. %C A263319 See also A263325 for a similar conjecture. %H A263319 Zhi-Wei Sun, <a href="/A263319/b263319.txt">Table of n, a(n) for n = 1..10000</a> %e A263319 a(1) = 0 since pi(1^2)*phi(1)/2 = 0*1/2 = 0. %e A263319 a(2) = 1 since pi(2^2)*phi(2)/2 = 2*1/2 = 1. %e A263319 a(3) = 4 since pi(3^2)*phi(3)/2 = 4*2/2 = 4. %t A263319 a[n_]:=a[n]=PrimePi[n^2]*EulerPhi[n]/2 %t A263319 Do[Print[n," ",a[n]],{n,1,50}] %o A263319 (PARI) a(n) = primepi(n^2)*eulerphi(n)/2; \\ _Michel Marcus_, Oct 15 2015 %o A263319 (Magma) [#PrimesUpTo(n^2)*EulerPhi(n)/2: n in [1..80]]; // _Vincenzo Librandi_, Oct 15 2015 %Y A263319 Cf. A000010, A000290, A000720, A002618, A038107, A263317, A263321, A263325. %K A263319 nonn %O A263319 1,3 %A A263319 _Zhi-Wei Sun_, Oct 14 2015