cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A263320 Number of regular elements in Z_n[i].

Original entry on oeis.org

1, 3, 9, 9, 25, 27, 49, 33, 73, 75, 121, 81, 169, 147, 225, 129, 289, 219, 361, 225, 441, 363, 529, 297, 441, 507, 649, 441, 841, 675, 961, 513, 1089, 867, 1225, 657, 1369, 1083, 1521, 825, 1681, 1323, 1849, 1089, 1825, 1587, 2209, 1161, 2353, 1323, 2601, 1521
Offset: 1

Views

Author

Keywords

Comments

A Gaussian integer z is called regular (mod n) if there is a Gaussian integer x such that z^2 * x == z (mod n).
From Robert Israel, Nov 30 2015: (Start)
a(2^k) = 1 + 2^(2k-1) for k >= 1.
a(p) = p^2 if p is an odd prime.
a(p^k) = 1 - p^(2k-2) + p^(2k) if p is a prime == 3 mod 4.
a(p^k) = 1 - 2 p^(k-1) + 2 p^k + p^(2k-2) - 2 p^(2k-1) + p^(2k) if p is a prime == 1 mod 4.(End)

Examples

			a(2) = 3 because the regular elements in Z_2[i] are {0, 1, i}.
		

Crossrefs

Cf. A055653.

Programs

  • Mathematica
    regularQ[a_, b_, n_] := ! {0} == Union@Flatten@Table[If[Mod[(a + b I) - (a +  b I)^2 (x + y I),  n] == 0, x + I y, 0], {x, 0, n - 1}, {y, 0, n -1}]; Ho[1]=1; Ho[n_] := Ho[n] = Sum[If[regularQ[a, b, n], 1, 0], {a, 1, n}, {b, 1, n}]; Table[Ho[n], {n, 1, 33}]
    f[p_, e_] := If[Mod[p, 4] == 1, 1 - 2*p^(e-1) + 2*p^e + p^(2*e-2) - 2*p^(2*e-1) + p^(2*e), 1 - p^(2*e-2) + p^(2*e)]; f[2, e_] := 1 + 2^(2*e-1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Aug 31 2023 *)