A263321 Least positive integer m such that the numbers phi(k)*pi(k^2) (k = 1..n) are pairwise incongruent modulo m.
1, 3, 5, 7, 11, 13, 16, 19, 19, 19, 29, 29, 29, 37, 37, 59, 59, 59, 59, 59, 59, 59, 59, 101, 101, 101, 133, 133, 133, 133, 173, 173, 173, 173, 173, 173, 173, 173, 173, 173, 173, 173, 175, 245, 269, 269, 269, 269, 379, 379
Offset: 1
Keywords
Examples
a(7) = 16 since the 7 numbers phi(1)*pi(1^2) = 0, phi(2)*pi(2^2) = 2, phi(3)*pi(3^2) = 8, phi(4)*pi(4^2) = 12, phi(5)*pi(5^2) = 36, phi(6)*pi(6^2) = 22 and phi(7)*pi(7^2) = 90 are pairwise incongruent modulo 16, but not so modulo any positive integer smaller than 16.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 1..4000
- Zhi-Wei Sun, On functions taking only prime values, J. Number Theory 133(2013), 2794-2812.
Programs
-
Mathematica
f[n_]:=f[n]=EulerPhi[n]*PrimePi[n^2] Le[n_,m_]:=Le[m,n]=Length[Union[Table[Mod[f[k],m],{k,1,n}]]] Do[n=1;m=1;Label[aa];If[Le[n,m]==n,Goto[bb],m=m+1;Goto[aa]]; Label[bb];Print[n," ",m];If[n<50,n=n+1;Goto[aa]]]
Comments