cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A263323 The greater of maximal exponent and maximal prime index in the prime factorization of n.

This page as a plain text file.
%I A263323 #37 May 18 2017 02:41:13
%S A263323 0,1,2,2,3,2,4,3,2,3,5,2,6,4,3,4,7,2,8,3,4,5,9,3,3,6,3,4,10,3,11,5,5,
%T A263323 7,4,2,12,8,6,3,13,4,14,5,3,9,15,4,4,3,7,6,16,3,5,4,8,10,17,3,18,11,4,
%U A263323 6,6,5,19,7,9,4,20,3,21,12,3,8,5,6,22,4
%N A263323 The greater of maximal exponent and maximal prime index in the prime factorization of n.
%C A263323 Also: minimal m such that n divides (prime(m)#)^m. Here prime(m)# denotes the primorial A002110(m), i.e., the product of all primes from 2 to prime(m). - _Charles R Greathouse IV_, Oct 15 2015
%C A263323 Also: minimal m such that n is the product of at most m distinct primes not exceeding prime(m), with multiplicity at most m.
%C A263323 By convention, a(1)=0, as 1 is the empty product.
%C A263323 Those n with a(n) <= k fill a k-hypercube whose 1-sides span from 0 to k.
%C A263323 A263297 is a similar construction, with a k-simplex instead of a hypercube.
%C A263323 Each nonnegative integer occurs finitely often; in particular:
%C A263323 - Terms a(n) <= k occur A000169(k+1) = (k+1)^k times.
%C A263323 - The term a(n) = 0 occurs exactly once.
%C A263323 - The term a(n) = k > 0 occurs exactly A178922(k) = (k+1)^k - k^(k-1) times.
%H A263323 G. C. Greubel, <a href="/A263323/b263323.txt">Table of n, a(n) for n = 1..5000</a>
%F A263323 a(n) = max(A051903(n), A061395(n)).
%F A263323 a(n) <= pi(n), with equality if n=1 or prime.
%e A263323 a(36)=2 because 36 is the product of 2 distinct primes (2*2*3*3), each not exceeding prime(2)=3, with multiplicity not exceeding 2.
%t A263323 f[n_] := Max[ PrimePi[ Max @@ First /@ FactorInteger@n], Max @@ Last /@ FactorInteger@n]; Array[f, 80]
%o A263323 (PARI) a(n) = if (n==1, 0, my(f = factor(n)); max(vecmax(f[,2]), primepi(f[#f~,1]))); \\ _Michel Marcus_, Oct 15 2015
%Y A263323 Cf. A000169, A001221, A002110, A051903, A061395, A178922, A263297.
%K A263323 nonn
%O A263323 1,3
%A A263323 _Alexei Kourbatov_, Oct 14 2015