This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A263325 #16 Sep 08 2022 08:46:14 %S A263325 0,6,16,42,54,132,120,270,286,450,360,952,546,1056,1152,1674,1098, %T A263325 2574,1440,3276,2720,3312,2376,6300,3534,5124,5160,7672,4380,11088, %U A263325 5184,10836,8688,10314,9600,19110,8322,13680,13440,22590,11046,26304,12452,24780,23868,22968,15792,42408,20349,34131 %N A263325 a(n) = sigma(n)*pi(n^2), where sigma(n) is the sum of all (positive) divisors of n, and pi(x) is the number of primes not exceeding x. %C A263325 Conjecture: (i) All the terms of this sequence are pairwise distinct. %C A263325 (ii) All the numbers sigma(n)*pi(n*(n+1)) (n = 1,2,3,...) are pairwise distinct. %C A263325 (iii) All the numbers n*sigma(n)*pi(n^2) (n = 1,2,3,...) are pairwise distinct, and all the numbers sigma(n^2)*pi(n^2) (n = 1,2,3,...) are also pairwise distinct. %C A263325 (iv) All the numbers n*phi(n)*sigma(n^2) = phi(n^2)*sigma(n^2) (n = 1,2,3,...) are pairwise distinct, where phi(.) is Euler's totient function. %C A263325 We have verified that the terms a(n) (n = 1..4*10^5) are indeed pairwise distinct. %C A263325 See also A263319 for a similar conjecture. %H A263325 Zhi-Wei Sun, <a href="/A263325/b263325.txt">Table of n, a(n) for n = 1..10000</a> %e A263325 a(1) = 0 since sigma(1)*pi(1^2) = 1*0 = 0. %e A263325 a(2) = 6 since sigma(2)*pi(2^2) = 3*2 = 6. %t A263325 a[n_]:=a[n]=DivisorSigma[1,n]*PrimePi[n^2] %t A263325 Do[Print[n," ",a[n]],{n,1,50}] %o A263325 (PARI) a(n) = sigma(n)*primepi(n^2); \\ _Michel Marcus_, Oct 15 2015 %o A263325 (Magma) [#PrimesUpTo(n^2)*SumOfDivisors(n): n in [1..80]]; // _Vincenzo Librandi_, Oct 15 2015 %Y A263325 Cf. A000010, A000203, A000290, A000720, A002618, A038107, A065764, A263317, A263319. %K A263325 nonn %O A263325 1,2 %A A263325 _Zhi-Wei Sun_, Oct 14 2015