This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A263341 #64 Feb 16 2025 08:33:27 %S A263341 1,1,1,1,2,1,1,6,3,1,1,13,15,4,1,1,37,82,30,5,1,1,106,578,301,51,6,1, %T A263341 1,409,6021,4985,842,80,7,1,1,1896,101267,142276,27107,1995,117,8,1,1, %U A263341 12171,2882460,7269487,1724440,112225,4210,164,9,1,1,105070,138787233,655015612,210799447,13893557,388547,8165,221,10,1 %N A263341 Triangle read by rows: T(n,k) is the number of unlabeled simple graphs on n vertices with independence number k. %C A263341 The independence number of a graph is the maximum size of an independent set. %C A263341 Row sums give A000088, n >= 1. %C A263341 T(n,k) is also the number of graphs on n vertices such that a largest clique is of size k. - _Geoffrey Critzer_, Sep 23 2016 %C A263341 T(n,k) is also the number of graphs on n vertices such that the size of a smallest vertex cover is n-k. - _Geoffrey Critzer_, Sep 23 2016 %C A263341 T(n,k) is also the number of graphs on n vertices with independence number k. - _Eric W. Weisstein_, May 17 2017 %C A263341 For any graph the independence number is greater than or equal to the independent domination number (A332402) and less than or equal to the upper domination number (A332403). - _Andrew Howroyd_, Feb 19 2020 %H A263341 Brendan McKay, <a href="/A263341/b263341.txt">Table of n, a(n) for n = 1..91</a> (first 13 rows) %H A263341 FindStat - Combinatorial Statistic Finder, <a href="http://www.findstat.org/StatisticsDatabase/St000093">The length of the maximal independent set of vertices of a graph</a>. %H A263341 FindStat - Combinatorial Statistic Finder, <a href="http://www.findstat.org/StatisticsDatabase/St000097">The order of the largest clique of the graph</a>. %H A263341 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/CliqueNumber.html">Clique Number</a> %H A263341 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/IndependenceNumber.html">Independence Number</a> %H A263341 Wikipedia, <a href="https://en.wikipedia.org/wiki/Clique_%28graph_theory%29">Clique (graph theory)</a> %e A263341 Triangle begins: %e A263341 1; %e A263341 1, 1; %e A263341 1, 2, 1; %e A263341 1, 6, 3, 1; %e A263341 1, 13, 15, 4, 1; %e A263341 1, 37, 82, 30, 5, 1; %e A263341 1, 106, 578, 301, 51, 6, 1; %e A263341 1, 409, 6021, 4985, 842, 80, 7, 1; %e A263341 1, 1896, 101267, 142276, 27107, 1995, 117, 8, 1; %e A263341 1, 12171, 2882460, 7269487, 1724440, 112225, 4210, 164, 9, 1; %e A263341 ... %Y A263341 Row sums are A000088. %Y A263341 Columns 2..9 are A052450, A052451, A052452, A077392, A077393, A077394, A205577, A205578. %Y A263341 Transpose of A287024. %Y A263341 Cf. A115196, A126744 (clique number of connected graphs), A294490 (independence number of connected graphs). %Y A263341 Cf. A263284, A332402, A332403. %K A263341 nonn,tabl %O A263341 1,5 %A A263341 _Christian Stump_, Oct 15 2015 %E A263341 a(21)-a(28) from _Geoffrey Critzer_, Sep 22 2016 %E A263341 Rows 8-10 from _Eric W. Weisstein_, May 16 2017 %E A263341 Rows 11-13 from _Brendan McKay_, Feb 18 2020 %E A263341 Name clarified by _Andrew Howroyd_, Feb 18 2020