cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A263345 Expansion of Product_{k>=1} ((1 + x^k)/(1 + x^(3*k)))^k.

This page as a plain text file.
%I A263345 #8 Apr 16 2017 05:47:26
%S A263345 1,1,2,4,7,14,22,40,65,107,176,282,448,705,1101,1701,2611,3977,6021,
%T A263345 9048,13527,20102,29720,43712,63997,93259,135317,195539,281440,403559,
%U A263345 576568,820888,1164826,1647583,2323169,3266041,4578305,6399990,8922389,12406535
%N A263345 Expansion of Product_{k>=1} ((1 + x^k)/(1 + x^(3*k)))^k.
%H A263345 Vaclav Kotesovec, <a href="/A263345/b263345.txt">Table of n, a(n) for n = 0..1000</a>
%H A263345 Vaclav Kotesovec, <a href="http://arxiv.org/abs/1509.08708">A method of finding the asymptotics of q-series based on the convolution of generating functions</a>, arXiv:1509.08708 [math.CO], Sep 30 2015
%F A263345 a(n) ~ Zeta(3)^(1/6) * exp(2^(-1/3) * 3^(2/3) * Zeta(3)^(1/3) * n^(2/3)) / (2^(1/6) * 3^(2/3) * sqrt(Pi) * n^(2/3)).
%t A263345 nmax=40; CoefficientList[Series[Product[((1 + x^k)/(1 + x^(3*k)))^k,{k,1,nmax}],{x,0,nmax}],x]
%Y A263345 Cf. A003105, A026007, A262876, A262877, A262878, A262879, A263346.
%Y A263345 Cf. A285289, A285290, A285291.
%K A263345 nonn
%O A263345 0,3
%A A263345 _Vaclav Kotesovec_, Oct 15 2015