This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A263346 #5 Oct 15 2015 13:08:10 %S A263346 1,1,3,5,12,21,40,71,130,221,387,648,1095,1800,2964,4792,7730,12301, %T A263346 19510,30619,47859,74179,114469,175427,267684,406039,613325,921671, %U A263346 1379500,2055313,3050652,4509385,6641966,9746452,14254242,20775255,30184451,43715711 %N A263346 Expansion of Product_{k>=1} ((1 - x^(3*k))/(1 - x^k))^k. %H A263346 Vaclav Kotesovec, <a href="/A263346/b263346.txt">Table of n, a(n) for n = 0..1000</a> %H A263346 Vaclav Kotesovec, <a href="http://arxiv.org/abs/1509.08708">A method of finding the asymptotics of q-series based on the convolution of generating functions</a>, arXiv:1509.08708 [math.CO], Sep 30 2015 %F A263346 a(n) ~ 2^(1/6) * Zeta(3)^(1/6) * exp(6^(1/3) * Zeta(3)^(1/3) * n^(2/3)) / (3^(11/12) * sqrt(Pi) * n^(2/3)). %t A263346 nmax=40; CoefficientList[Series[Product[((1 - x^(3*k))/(1 - x^k))^k,{k,1,nmax}],{x,0,nmax}],x] %Y A263346 Cf. A000726, A000219, A262876, A262877, A262878, A262879, A263345. %K A263346 nonn %O A263346 0,3 %A A263346 _Vaclav Kotesovec_, Oct 15 2015