cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A263355 Table read by rows: cycles of the permutation A263327, sorted in increasing order of their largest element. The elements in each cycle are listed in decreasing numerical order.

This page as a plain text file.
%I A263355 #18 Dec 11 2019 21:58:43
%S A263355 0,1,2,16,12,5,17,18,84,192,75,68,65,64,56,38,28,26,7,939,978,908,881,
%T A263355 853,852,840,809,798,782,777,776,772,760,758,756,746,736,717,711,708,
%U A263355 703,698,690,669,666,662,647,622,610,595,585,564,555,553,547,531
%N A263355 Table read by rows: cycles of the permutation A263327, sorted in increasing order of their largest element. The elements in each cycle are listed in decreasing numerical order.
%C A263355 A263383(n) gives the number of terms in row n.
%C A263355 Fixed points: T(k,m) in A263329 <=> A263383(k) = 1 = m. [Corrected by _M. F. Hasler_, Dec 11 2019]
%C A263355 The permutations A263327 and its inverse A263328 have 18 cycles, of which 12 are fixed points (listed in A263329), two are 3-cycles (rows 4 and 14 of this table), two are 10-cycles (rows 8 & 13), one is a 74-cycle (row 10) and one is a 912-cycle. - _M. F. Hasler_, Dec 11 2019
%C A263355 Normally one would list the elements in each cycle in the order in which they appear when the permutation is applied, but that is not the order used here. - _N. J. A. Sloane_, Dec 11 2019
%H A263355 Reinhard Zumkeller, <a href="/A263355/b263355.txt">Rows n = 1..18 of triangle, flattened</a>, 1024 terms
%e A263355    n | Cycles: A263355(n, k=1..A263383(n))                    | A263383(n)
%e A263355   ---+--------------------------------------------------------+-----------
%e A263355    1 | (0)                                                    |       1
%e A263355    2 | (1)                                                    |       1
%e A263355    3 | (2)                                                    |       1
%e A263355    4 | (16, 12, 5)                                            |       3
%e A263355    5 | (17)                                                   |       1
%e A263355    6 | (18)                                                   |       1
%e A263355    7 | (84)                                                   |       1
%e A263355    8 | (192, 75, 68, 65, 64, 56, 38, 28, 26, 7)               |      10
%e A263355    9 | (939)                                                  |       1
%e A263355   10 | (978, 908, 881, 853, 852, 840, ..., 142, 115, 45)      |      74
%e A263355   11 | (1005)                                                 |       1
%e A263355   12 | (1006)                                                 |       1
%e A263355   13 | (1016, 997, 995, 985, 967, 959, 958, 955, 948, 831)    |      10
%e A263355   14 | (1018, 1011, 1007)                                     |       3
%e A263355   15 | (1020, 1019, 1017, 1015, 1014, ..., 10, 9, 8, 6, 4, 3) |     912
%e A263355   16 | (1021)                                                 |       1
%e A263355   17 | (1022)                                                 |       1
%e A263355   18 | (1023)                                                 |       1
%e A263355 A263327(5) = 16, A263327(16) = 12, A263327(12) = 5, so (5 16 12) = (16 12 5) is a 3-cycle. For all other cycles of length > 1, the order in which the terms occur under the map (e.g. 1018 -> 1007 -> 1011 -> 1018 for row 14) is different from the decreasing order given above. - _M. F. Hasler_, Dec 11 2019
%o A263355 (Haskell)
%o A263355 import Data.List ((\\), sort)
%o A263355 a263355 n k = a263355_tabf !! (n-1) !! (k-1)
%o A263355 a263355_row n = a263355_tabf !! (n-1)
%o A263355 a263355_tabf = sort $ cc a263327_list where
%o A263355    cc [] = []
%o A263355    cc (x:xs) = (reverse $ sort ys) : cc (xs \\ ys)
%o A263355       where ys = x : c x
%o A263355             c z = if y /= x then y : c y else []
%o A263355                   where y = a263327 z
%o A263355 (PARI) {M=0; (C(x,L=[x])=until(x==L[1], M+=1<<x; x&&L=concat(L,x=A263327[x]));L); vecsort(vector(18,i,vecsort(C(valuation(M+1,2)),,12)))} \\ append [^15] to remove the long row 15. - _M. F. Hasler_, Dec 11 2019
%Y A263355 Cf. A263327, A263383 (row lengths), A263329.
%K A263355 nonn,fini,full,tabf
%O A263355 1,3
%A A263355 _Reinhard Zumkeller_, Oct 16 2015
%E A263355 Edited by _M. F. Hasler_, Dec 11 2019