cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A263384 Fourth column of the matrix of polynomial coefficients of the rational approximation to Mill's ratio.

Original entry on oeis.org

1, 14, 185, 2640, 41685, 729330, 14073885, 297693900, 6859400625, 171172905750, 4601737965825, 132643472761800, 4082080279402125, 133614981594344250, 4635763624512145125, 169957871025837394500
Offset: 0

Views

Author

Alexander Kreinin, Oct 16 2015

Keywords

Comments

Rational approximations, Q_{k-1}(t)/P_k(t), to Mill's ratio, R(t)=(1-Phi(t))/f(t), where Phi(t) is the standard normal distribution function and f(t) is the standard normal density, were discovered by Laplace, who computed the first four polynomials. Thirty years later, Jacobi derived recurrence relations for these polynomials and analyzed some of their analytical properties. The coefficients q_{k,m} of Q_k(t) form a matrix, of which this is the fourth column. The double generating function for the polynomials Q_k(t) is computed in A. Kreinin (see Links). The coefficients q_{k,m} are described by the triangular array A180048.

Crossrefs

Columns of the matrix [q_{k,m}] include: A000165 (m=1), A129890 (m=2), A035101 (m=3), this sequence (m=4).
Cf. A180048.

Programs

  • Mathematica
    Table[((2 n + 6)!! - 3 (2 n + 5)!! + (2 n + 3)!!)/6, {n, 0, 12}] (* Michael De Vlieger, Oct 27 2015 *)
  • PARI
    a(n)=(prod(k=1, n+3, 2*k)-3*prod(k=1, n+3,(2*k-1))+prod(k=1, n+2, 2*k-1))/6;
    vector(20, n, a(n-1)) \\ Altug Alkan, Oct 16 2015

Formula

a(n) = ((2*n+6)!! - 3*(2*n+5)!! + (2*n+3)!!)/6, n>=0.