This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A263443 #12 Feb 22 2020 20:54:24 %S A263443 1,2,3,4,5,6,7,8,9,10,14,1,17,130,21,50,15,28,180,33,20,37,2,200,42, %T A263443 52,47,270,162,60,57,310,300,3,66,350,35,73,380,78,400,41,84,302,4,91, %U A263443 460,96,480,22,104,510,110,530,115,5,55,122,580,53,132,146,136 %N A263443 A self-describing sequence: when the sequence is read as a string of decimal digits, a(n) gives the starting position of an occurrence of n. This sequence is the lexicographically earliest one with this property. %C A263443 The sequence does not necessarily give the earliest position of a number. %C A263443 For example, 1234 first appears at position 1, but a(1234) = 28011. %H A263443 Paul Tek, <a href="/A263443/b263443.txt">Table of n, a(n) for n = 1..10000</a> %H A263443 Paul Tek, <a href="/A263443/a263443.pl.txt">PERL program for this sequence</a> %e A263443 The following table lists few first terms, with the corresponding digits induced in the overall sequence: %e A263443 +----+------+------------------------------------------------------------+ %e A263443 | n | a(n) | New known digits | %e A263443 +----+------+------------------------------------------------------------+ %e A263443 | 1 | 1 | 1 | %e A263443 | 2 | 2 | 2 | %e A263443 | 3 | 3 | 3 | %e A263443 | 4 | 4 | 4 | %e A263443 | 5 | 5 | 5 | %e A263443 | 6 | 6 | 6 | %e A263443 | 7 | 7 | 7 | %e A263443 | 8 | 8 | 8 | %e A263443 | 9 | 9 | 9 | %e A263443 | 10 | 10 | 10 | %e A263443 | 11 | 14 | 1411 | %e A263443 | 12 | 1 | | %e A263443 | 13 | 17 | 713 | %e A263443 | 14 | 130 | 0 ... 14 | %e A263443 | 15 | 21 | 215 | %e A263443 | 16 | 50 | 0 16 | %e A263443 | 17 | 15 | 15 | %e A263443 | 18 | 28 | 2818 | %e A263443 +----+------+------------------------------------------------------------+ %o A263443 (Perl) See Links section. %Y A263443 Cf. A048991, A114315, A125132, A210423. %K A263443 nonn,base %O A263443 1,2 %A A263443 _Paul Tek_, Oct 18 2015