A263445 a(n) = (2n+1)*(n+1)!*Bernoulli(2n).
1, 1, -1, 4, -36, 600, -16584, 705600, -43751232, 3790108800, -443539877760, 68218849036800, -13478425925184000, 3355402067989171200, -1035218714714606822400, 390189256983139461120000, -177430554756972746695065600, 96269372301568677170319360000
Offset: 0
Keywords
Links
Programs
-
Maple
seq((2*n+1)*(n+1)!*bernoulli(2*n), n=0..50); # Robert Israel, Oct 18 2015
-
Mathematica
Table[(2n + 1) (n + 1)! BernoulliB[2n], {n, 0, 17}]
-
PARI
vector(30, n, n--; (2*n+1)*(n+1)!*bernfrac(2*n)) \\ Altug Alkan, Oct 18 2015
-
Python
from math import factorial from sympy import bernoulli def A263445(n): return (2*n+1)*factorial(n+1)*bernoulli(2*n) # Chai Wah Wu, May 18 2022
Formula
a(n) = (2n+1)*(n+1)!*Bernoulli(2n).
a(n) ~ (-1)^(n+1)*8*sqrt(2)*n^3*(n/e)^(3*n)*Pi^(1-2*n). - Vladimir Reshetnikov, Sep 05 2016