This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A263458 #22 Aug 02 2024 09:29:27 %S A263458 4,6,12,22,28,30,36,46,52,60,70,78,100,102,108,126,148,150,156,166, %T A263458 172,180,190,196,198,222,228,238,262,268,270,276,292,310,316,348,358, %U A263458 366,372,382,388,396,420,430,438,460,462,478,486,502,508,540,556,598 %N A263458 Deal a pack of n cards into two piles and gather them up, n/2 times. All n such that this reverses the order of the deck. %C A263458 This seems to be A003628(n)-1; that is, each element of this sequence is one less than a prime congruent to 5 or 7 modulo 8. %e A263458 Take a deck of 52 playing cards. Deal it into two piles, then pick up the first pile and put it on top of the other. Do this 26 times. The order of the deck is reversed, so 52 belongs to this sequence. %e A263458 6 is in the sequence because the 3 shuffles are [1, 2, 3, 4, 5, 6] -> [5, 3, 1, 6, 4, 2] -> [4, 1, 5, 2, 6, 3] -> [6, 5, 4, 3, 2, 1], original reversed. 8 is not in the sequence because the 4 shuffles are [1, 2, 3, 4, 5, 6, 7, 8] -> [7, 5, 3, 1, 8, 6, 4, 2] -> [4, 8, 3, 7, 2, 6, 1, 5] -> [1, 2, 3, 4, 5, 6, 7, 8] -> [7, 5, 3, 1, 8, 6, 4, 2], not the original reversed. - _R. J. Mathar_, Aug 02 2024 %p A263458 isA263458 := proc(n) %p A263458 local L,itr ; %p A263458 L := [seq(i,i=1..n)] ; %p A263458 for itr from 1 to n/2 do %p A263458 L := pileShuf(L) ; # function code in A323712 %p A263458 end do: %p A263458 for i from 1 to nops(L) do %p A263458 if op(-i,L) <> i then %p A263458 return false ; %p A263458 end if; %p A263458 end do: %p A263458 true ; %p A263458 end proc: %p A263458 n := 1; %p A263458 for k from 2 do %p A263458 if isA263458(k) then %p A263458 printf("%d %d\n",n,k) ; %p A263458 n := n+1 ; %p A263458 end if; %p A263458 end do: # _R. J. Mathar_, Aug 02 2024 %o A263458 (Sage) %o A263458 from itertools import cycle %o A263458 def into_piles(r,deck): %o A263458 packs = [[] for i in range(r)] %o A263458 for card, pack in zip(range(1,deck+1),cycle(range(r))): %o A263458 packs[pack].insert(0,card) %o A263458 out = sum(packs,[]) %o A263458 return Permutation(out) %o A263458 def has_reversing_property(deck): %o A263458 p = power(into_piles(2,deck), deck/2) %o A263458 return p==into_piles(1,deck) %o A263458 [i for i in range(2,400,2) if has_reversing_property(i)] %Y A263458 Cf. A003628, A373416. %K A263458 nonn %O A263458 1,1 %A A263458 _Christian Perfect_, Oct 19 2015