A263484
Triangle read by rows: T(n,k) (n>=1, 0<=k
1, 1, 1, 1, 2, 3, 1, 3, 7, 13, 1, 4, 12, 32, 71, 1, 5, 18, 58, 177, 461, 1, 6, 25, 92, 327, 1142, 3447, 1, 7, 33, 135, 531, 2109, 8411, 29093, 1, 8, 42, 188, 800, 3440, 15366, 69692, 273343, 1, 9, 52, 252, 1146, 5226, 24892, 125316, 642581, 2829325
Offset: 1
Examples
Triangle begins: 1, 1, 1, 1, 2, 3, 1, 3, 7, 13, 1, 4, 12, 32, 71, 1, 5, 18, 58, 177, 461, ... Triangle [1, 0, 0, 0, 0, ...] DELTA [0, 1, 2, 2, 3, 3, ...]: 1; 1, 0; 1, 1, 0; 1, 2, 3, 0; 1, 3, 7, 13, 0; 1, 4, 12, 32, 71, 0; ... - _Philippe Deléham_, Feb 18 2020
Links
- Alois P. Heinz, Rows n = 0..150, flattened
- FindStat - Combinatorial Statistic Finder, The cardinality of the complement of the connectivity set.
- Mathematics Stack Exchange, Discussion of this sequence, June 2019.
- Richard P. Stanley, The Descent Set and Connectivity Set of a Permutation, arXiv:math/0507224 [math.CO], 2005.
Crossrefs
Programs
-
Mathematica
rows = 11; (* DELTA is defined in A084938 *) Most /@ DELTA[Table[Boole[n == 1], {n, rows}], Join[{0, 1}, LinearRecurrence[{1, 1, -1}, {2, 2, 3}, rows]], rows] // Flatten (* Jean-François Alcover, Feb 18 2020, after Philippe Deléham *)
-
SageMath
# cf. FindStat link def statistic(x): return len(set(x.reduced_word())) for n in [1..6]: for pi in Permutations(n): print(pi, "=>", statistic(pi))
Extensions
More terms from Fred Lunnon and Christian Stump
Name changed by Georg Fischer as proposed by Allan C. Wechsler, Jun 13 2019
Comments