A263488 Positive integers n that can be expressed as the quotient of two elements of A005836.
1, 3, 4, 7, 9, 10, 12, 13, 19, 21, 22, 25, 27, 28, 30, 31, 34, 36, 37, 39, 40, 55, 57, 58, 61, 63, 64, 66, 67, 70, 73, 75, 76, 79, 81, 82, 84, 85, 88, 90, 91, 93, 94, 97, 100, 102, 103, 106, 108, 109, 111, 112, 115, 117, 118, 120, 121, 163, 165, 166, 169, 171, 172, 174, 175, 178, 181, 183, 184, 187, 189, 190, 192, 193, 196
Offset: 1
Examples
7 is in the sequence because it can be expressed as 28/4, and in base 3 28 is 1001 and 4 is 11.
Links
- Jeffrey Shallit and Robert Israel, Table of n, a(n) for n = 1..1000 (n = 1..399 from Jeffrey Shallit)
Crossrefs
Cf. A005836.
Programs
-
Maple
F:= proc(N) option remember; uses GraphTheory; local L,G,a,k; if N mod 3 = 0 then procname(N/3) elif N mod 3 = 2 then return false fi; k:= ceil(log[3](2*N/3)); if N < (2/3)*3^k then return false fi; for a from 1 to N-1 do L[a]:= {3*a,3*a+1} od: for a from N to 2*N-1 do L[a]:= subs(0=3*N,{3*(a-N),3*(a-N)+1}); od: for a from 2*N to 3*N do L[a]:= {}; od: L[3*N+1]:= remove(t -> has(convert(t,base,3),2), {$1..3*N-1}): G:= Digraph(3*N+1,[seq(L[a],a=1..3*N+1)]); try ShortestPath(G,3*N+1,3*N); catch "no path from": return false; end try; true end proc: select(F, [$1..1000]); # Robert Israel, Dec 03 2015
Comments