cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A263491 Decimal expansion of the generalized hypergeometric function 3F2(1/2,1/2,3/2; 1,1;x) at x=1/4.

This page as a plain text file.
%I A263491 #8 Apr 10 2016 06:05:40
%S A263491 1,1,1,4,4,9,3,6,2,2,5,2,8,8,2,0,2,1,6,0,8,0,9,9,5,0,6,9,9,6,0,6,1,3,
%T A263491 5,3,2,0,7,5,1,9,1,5,4,3,6,0,7,7,9,0,2,4,3,7,8,8,1,9,1,4,2,2,6,3,2,8,
%U A263491 0,4,7,9,8,8,7,1,4,2,7,7,8,8,8,7,1,9,7,1,5,1,0,0,5
%N A263491 Decimal expansion of the generalized hypergeometric function 3F2(1/2,1/2,3/2; 1,1;x) at x=1/4.
%C A263491 Multiplication with Pi^2/8 gives 1.37495.. = integral_{x=0..infinity} x*I_0(x)*K_0(x)*K_1(x) dx, where I and K are Modified Bessel Functions
%e A263491 1.1144936225288202160...
%t A263491 RealDigits[HypergeometricPFQ[{1/2, 1/2, 3/2}, {1, 1}, 1/4], 10, 120][[1]] (* _Vaclav Kotesovec_, Apr 10 2016 *)
%t A263491 RealDigits[4*MeijerG[{{1, 1}, {1}}, {{1/2, 1/2, 3/2}, {}}, 1/4] / Pi^(5/2), 10, 120][[1]] (* _Vaclav Kotesovec_, Apr 10 2016 *)
%K A263491 cons,nonn
%O A263491 1,4
%A A263491 _R. J. Mathar_, Oct 19 2015