cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A263498 Decimal expansion of the Gaussian Hypergeometric Function 2F1(1, 3; 5/2; x) at x=1/4.

This page as a plain text file.
%I A263498 #12 Aug 01 2016 11:35:58
%S A263498 1,4,1,8,3,9,9,1,5,2,3,1,2,2,9,0,4,6,7,4,5,8,7,7,1,0,1,0,1,8,9,5,4,0,
%T A263498 9,7,6,3,7,8,7,5,4,9,9,7,4,5,6,9,8,7,4,3,4,0,9,3,1,7,9,9,1,3,8,5,0,8,
%U A263498 3,0,9,0,8,1,6,8,4,7,1,8,4,4,9,1,2,1,6,6,6,5,0,9,4,9,4,1
%N A263498 Decimal expansion of the Gaussian Hypergeometric Function 2F1(1, 3; 5/2; x) at x=1/4.
%C A263498 Division through 3  gives 0.472799..  = integral_{x=0..infinity} x^2*I_1(x)*K_1(x)^2 dx, where I and K are Modified Bessel Functions.
%F A263498 Equals 4*Pi/3^(3/2) - 1. - _Vaclav Kotesovec_, Apr 10 2016
%e A263498 1.41839915231229046745877101018954097637875499745698743409317991385...
%t A263498 RealDigits[4*Pi/3^(3/2) - 1, 10, 120][[1]] (* _Vaclav Kotesovec_, Apr 10 2016 *)
%o A263498 (PARI) 4*Pi/sqrt(27)-1 \\ _Charles R Greathouse IV_, Aug 01 2016
%Y A263498 Cf. A073010.
%K A263498 cons,nonn
%O A263498 1,2
%A A263498 _R. J. Mathar_, Oct 19 2015