cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A263519 T(n,k) = Number of (n+1) X (k+1) arrays of permutations of 0..(n+1)*(k+1)-1 filled by rows with each element moved a city block distance of 0 or 1, and rows and columns in increasing lexicographic order.

Original entry on oeis.org

3, 7, 8, 15, 35, 23, 29, 160, 208, 66, 53, 660, 2076, 1198, 190, 93, 2651, 18369, 25968, 7022, 547, 159, 10350, 158109, 489294, 331130, 41035, 1575, 267, 39807, 1317780, 9051857, 13332096, 4213002, 240237, 4535, 443, 151463, 10791350, 162207955
Offset: 1

Views

Author

R. H. Hardin, Oct 19 2015

Keywords

Comments

Table starts
.....3.......7.........15............29...............53..................93
.....8......35........160...........660.............2651...............10350
....23.....208.......2076.........18369...........158109.............1317780
....66....1198......25968........489294..........9051857...........162207955
...190....7022.....331130......13332096........529329240.........20339400914
...547...41035....4213002.....362159570......30867389241.......2543460828164
..1575..240237...53712998....9866744449....1805523575884.....319022980139204
..4535.1406038..684799391..268827612021..105637731091773...40028581755172441
.13058.8230727.8732881192.7327820172316.6184312882582853.5025951440933512579

Examples

			Some solutions for n=3 k=4
..0..1..7..8..9....0..1..7..8..9....0..1..2..3..4....0..1..2..4..9
..6..5..2..3..4...10..5..2..3..4....5..6..8..7..9....5..7..6..3..8
.10.12.11.13.19...11..6.12.13.14...15.10.13.12.14...10.12.11.14.13
.15.17.16.18.14...15.16.17.19.18...16.11.18.17.19...15.16.17.18.19
		

Crossrefs

Column 1 is A147704(n+1).
Row 1 is A192960.

Formula

Empirical for column k:
k=1: a(n) = 3*a(n-1) -a(n-3)
k=2: [order 10]
k=3: [order 35]
Empirical for row n:
n=1: a(n) = 3*a(n-1) -2*a(n-2) -a(n-3) +a(n-4)
n=2: [order 10]
n=3: [order 29]
n=4: [order 92]