A263520 Number of (2+1) X (n+1) arrays of permutations of 0..n*3+2 filled by rows with each element moved a city block distance of 0 or 1, and rows and columns in increasing lexicographic order.
8, 35, 160, 660, 2651, 10350, 39807, 151463, 572454, 2153977, 8081566, 30264786, 113201857, 423085492, 1580453125, 5901900685, 22034817900, 82255893847, 307033492332, 1145986101448, 4277171754383, 15963330711354, 59577671664211
Offset: 1
Keywords
Examples
Some solutions for n=4: ..0..1..2..8..9....0..1..2..4..9....0..1..2..3..4....0..2..3..4..9 .10..5..7..3..4....5..6..8..3.14....5..6.12..7.14....5..1..6..7..8 .11..6.12.14.13...11.10..7.12.13...11.10.13..8..9...10.11.13.12.14
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Row 2 of A263519.
Formula
Empirical: a(n) = 7*a(n-1) - 11*a(n-2) - 14*a(n-3) + 36*a(n-4) + 8*a(n-5) - 36*a(n-6) - 2*a(n-7) + 13*a(n-8) + a(n-9) - a(n-10).
Empirical g.f.: x*(8 - 21*x + 3*x^2 + 37*x^3 - 7*x^4 - 31*x^5 + 6*x^6 + 14*x^7 - x^9) / ((1 - x)^2*(1 + x)^2*(1 - 4*x + x^2)*(1 - x - x^2)*(1 - 2*x - x^2)). - Colin Barker, Jan 01 2019