cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A263520 Number of (2+1) X (n+1) arrays of permutations of 0..n*3+2 filled by rows with each element moved a city block distance of 0 or 1, and rows and columns in increasing lexicographic order.

Original entry on oeis.org

8, 35, 160, 660, 2651, 10350, 39807, 151463, 572454, 2153977, 8081566, 30264786, 113201857, 423085492, 1580453125, 5901900685, 22034817900, 82255893847, 307033492332, 1145986101448, 4277171754383, 15963330711354, 59577671664211
Offset: 1

Views

Author

R. H. Hardin, Oct 19 2015

Keywords

Examples

			Some solutions for n=4:
..0..1..2..8..9....0..1..2..4..9....0..1..2..3..4....0..2..3..4..9
.10..5..7..3..4....5..6..8..3.14....5..6.12..7.14....5..1..6..7..8
.11..6.12.14.13...11.10..7.12.13...11.10.13..8..9...10.11.13.12.14
		

Crossrefs

Row 2 of A263519.

Formula

Empirical: a(n) = 7*a(n-1) - 11*a(n-2) - 14*a(n-3) + 36*a(n-4) + 8*a(n-5) - 36*a(n-6) - 2*a(n-7) + 13*a(n-8) + a(n-9) - a(n-10).
Empirical g.f.: x*(8 - 21*x + 3*x^2 + 37*x^3 - 7*x^4 - 31*x^5 + 6*x^6 + 14*x^7 - x^9) / ((1 - x)^2*(1 + x)^2*(1 - 4*x + x^2)*(1 - x - x^2)*(1 - 2*x - x^2)). - Colin Barker, Jan 01 2019