This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A263535 #28 Jan 19 2021 18:48:07 %S A263535 1,2,4,8,16,53,67,122,135,270,321,329,1065,1907,4390,5132,5181,5700, %T A263535 5754,6189,13269,73632,73977,93930,94758,128519,661103,661876,729478, %U A263535 1009425,1095200,1096587,2187425,2269554,2311471,2430158,4542981,4864284,5143384,5422306 %N A263535 a(1) = 1; thereafter a(n) = a(n-1) + d_1^1 + d_2^2 + d_3^3 + ..., where d_1 d_2 d_3 ... is the decimal expansion of a(n-1). %C A263535 This additive sequence will tend to be geometric. %H A263535 Pieter Post, <a href="/A263535/b263535.txt">Table of n, a(n) for n = 1..100</a> %e A263535 a(5)=16, so a(6) is 16 + 1^1 + 6^2 = 53. %t A263535 NestList[#+Total[IntegerDigits[#]^Range[IntegerLength[#]]]&,1,40] (* _Harvey P. Dale_, Jan 19 2021 *) %o A263535 (Python) %o A263535 def moda(n): %o A263535 return sum(int(d)**(i + 1) for i, d in enumerate(str(n))) %o A263535 b = 1 %o A263535 resu = [1] %o A263535 for a in range(1, 100): %o A263535 b += moda(b) %o A263535 resu.append(b) %o A263535 resu %o A263535 (Sage) A=[1] %o A263535 for i in [1..2000]: %o A263535 A.append(A[i-1]+sum(A[i-1].digits()[len(A[i-1].digits())-1-j]^(j+1) for j in [0..len(A[i-1].digits())-1])) %o A263535 A # _Tom Edgar_, Oct 20 2015 %o A263535 (PARI) lista(nn) = {print1(a=1, ", "); for (n=2, nn, d = digits(a); na = a + sum(i=1, #d, d[i]^i); print1(na, ", "); a = na;);} \\ _Michel Marcus_, Nov 20 2015 %Y A263535 Cf. A007629, A005188. %K A263535 nonn,base %O A263535 1,2 %A A263535 _Pieter Post_, Oct 20 2015