cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A263536 Row sum of an equilateral triangle tiled with the 3,4,5 Pythagorean triple.

This page as a plain text file.
%I A263536 #45 Mar 05 2025 01:11:56
%S A263536 5,7,12,17,19,24,29,31,36,41,43,48,53,55,60,65,67,72,77,79,84,89,91,
%T A263536 96,101,103,108,113,115,120,125,127,132,137,139,144,149,151,156,161,
%U A263536 163,168,173,175,180,185,187,192,197,199,204,209,211,216,221,223,228
%N A263536 Row sum of an equilateral triangle tiled with the 3,4,5 Pythagorean triple.
%C A263536 Maximum number of Pythagorean triples in an equilateral triangle.
%C A263536 Two rules are used to construct this equilateral triangle: #1. Start with the number 5 at the top. #2. Require every "triple" to contain the Pythagorean triple 3, 4, 5 (see link below).
%C A263536 Up and down Pythagorean triples consist of two terms below and one above when k is odd (an up triple), and two terms above and one below when k is even (a down triple). Three adjacent terms in a straight line within the triangle form a linear triple.
%H A263536 Colin Barker, <a href="/A263536/b263536.txt">Table of n, a(n) for n = 1..1000</a>
%H A263536 Craig Knecht, <a href="/A263536/a263536.jpg">Equilateral triangle tiled with 3,4,5 Pythagorean triples</a>.
%H A263536 Craig Knecht, <a href="/A263536/a263536_1.jpg">Interlocked up/down Pythagorean pairs</a>.
%H A263536 Craig Knecht, <a href="/A263536/a263536_2.jpg">Linear and triangular triples</a>.
%H A263536 Craig Knecht, <a href="/A263536/a263536_4.jpg">Incarcerated numbers</a>.
%H A263536 <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (1,0,1,-1).
%F A263536 From _Colin Barker_, Oct 26 2015: (Start)
%F A263536 a(n) = a(n-1)+a(n-3)-a(n-4) for n>4.
%F A263536 G.f.: x*(5*x^2+2*x+5) / ((x-1)^2*(x^2+x+1)).
%F A263536 (End)
%e A263536 Triangle T(n,k):           Row sum
%e A263536   5;                          5
%e A263536   3, 4;                       7
%e A263536   4, 5, 3;                   12
%e A263536   5, 3, 4, 5;                17
%e A263536   3, 4, 5, 3, 4;             19
%e A263536   4, 5, 3, 4, 5, 3;          24
%o A263536 (PARI) Vec(x*(5*x^2+2*x+5)/((x-1)^2*(x^2+x+1)) + O(x^100)) \\ _Colin Barker_, Oct 26 2015
%Y A263536 Cf. A136289 (every triple contains 1,2,3), A008854 (every triple contains 1,2,2), A259052 (sum of Pascal triples).
%K A263536 nonn,easy
%O A263536 1,1
%A A263536 _Craig Knecht_, Oct 20 2015