cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A263560 Primes p such that for every k >= 1, p*2^k + 1 has a divisor in the set {3, 5, 13, 17, 97, 241, 257}.

This page as a plain text file.
%I A263560 #16 Apr 03 2023 10:36:13
%S A263560 37158601,7425967459,9013226179,13671059747,14140683563,17190420571,
%T A263560 17210867747,18553286303,18563509891,19720992901,20064786439,
%U A263560 22400387281,23728062893,29428753891,36195177107,41074421693,44786947187,45199948253,48845530249
%N A263560 Primes p such that for every k >= 1, p*2^k + 1 has a divisor in the set {3, 5, 13, 17, 97, 241, 257}.
%C A263560 What is the smallest term of this sequence that belongs to A180247? Is it the smallest prime Brier number?
%H A263560 Chris Caldwell, The Prime Glossary, <a href="https://t5k.org/glossary/xpage/SierpinskiNumber.html">Sierpinski number</a>
%H A263560 Fred Cohen and J. L. Selfridge, <a href="http://www.jstor.org/stable/2005463">Not every number is the sum or difference of two prime powers</a>, Math. Comput. 29 (1975), pp. 79-81.
%H A263560 Carlos Rivera, <a href="http://www.primepuzzles.net/problems/prob_052.htm">Problem 52</a>
%Y A263560 Cf. A076336, A180247, A263562.
%Y A263560 Subsequence of A263347.
%K A263560 nonn
%O A263560 1,1
%A A263560 _Arkadiusz Wesolowski_, Oct 21 2015