cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A263561 Odd numbers n such that for every k >= 1, n*2^k - 1 has a divisor in the set {3, 5, 13, 17, 97, 241, 257}.

This page as a plain text file.
%I A263561 #16 Apr 03 2023 10:36:13
%S A263561 42270067,97579567,340716433,721933559,890948323,1726122269,
%T A263561 1865978047,1889699677,2362339121,3185721853,3637126963,4668508603,
%U A263561 5064217117,5569622789,7480754459,7701804269,8594194301,9005098303,9180863669,9939496717,9979211051
%N A263561 Odd numbers n such that for every k >= 1, n*2^k - 1 has a divisor in the set {3, 5, 13, 17, 97, 241, 257}.
%C A263561 What is the smallest term of this sequence that belongs to A076335? Is it the smallest Brier number?
%C A263561 This sequence contains only numbers of the form 30*k + 7, 30*k + 11, 30*k + 13, 30*k + 29.
%H A263561 Arkadiusz Wesolowski, <a href="/A263561/b263561.txt">Table of n, a(n) for n = 1..96</a>
%H A263561 Chris Caldwell, The Prime Glossary, <a href="https://t5k.org/glossary/xpage/RieselNumber.html">Riesel number</a>
%H A263561 Carlos Rivera, <a href="http://www.primepuzzles.net/problems/prob_029.htm">Problem 29</a> and <a href="http://www.primepuzzles.net/problems/prob_058.htm">Problem 58</a>
%H A263561 <a href="/index/Rec#order_97">Index entries for linear recurrences with constant coefficients</a>, signature (1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1).
%F A263561 a(n) = a(n-96) + 39832304070 for n > 96.
%Y A263561 Cf. A076335, A263347.
%Y A263561 Subsequence of A101036.
%Y A263561 A263562 gives the primes.
%K A263561 nonn
%O A263561 1,1
%A A263561 _Arkadiusz Wesolowski_, Oct 21 2015