This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A263563 #22 Apr 25 2016 12:00:17 %S A263563 1,2,3,4,5,6,7,8,9,10,11,110,100,12,120,1200,20,13,130,1300,30,14,140, %T A263563 1400,40,15,150,1500,50,16,160,1600,60,17,170,1700,70,18,180,1800,80, %U A263563 19,190,1900,90,21,210,2100,1000,22,220,2200,22000,200,23,230,2300 %N A263563 A self-describing sequence: when the sequence is read as a string of decimal digits, a(n) can be read from position n (ignoring leading zeros). This sequence is the lexicographically earliest sequence of distinct terms with this property. %C A263563 Leading zeros that may appear while reading a(n) arise from non-leading zeros in some previous term, and are ignored. %C A263563 The table in the Example section makes the definition clearer. %C A263563 This sequence is conjectured to be a permutation of natural numbers, with putative inverse A263564. %H A263563 Paul Tek, <a href="/A263563/b263563.txt">Table of n, a(n) for n = 1..10000</a> %H A263563 Paul Tek, <a href="/A263563/a263563.pl.txt">PERL program for this sequence</a> %H A263563 <a href="/index/Per#IntegerPermutation">Index entries for sequences that are permutations of the natural numbers</a> %e A263563 The following table depicts the first few terms: %e A263563 +----+--------+-----------------------------------+ %e A263563 | n | a(n) | a(n) in situation with leading 0s | %e A263563 +----+--------+-----------------------------------+ %e A263563 | 1 | 1 | 1 | %e A263563 | 2 | 2 | 2 | %e A263563 | 3 | 3 | 3 | %e A263563 | 4 | 4 | 4 | %e A263563 | 5 | 5 | 5 | %e A263563 | 6 | 6 | 6 | %e A263563 | 7 | 7 | 7 | %e A263563 | 8 | 8 | 8 | %e A263563 | 9 | 9 | 9 | %e A263563 | 10 | 10 | 10 | %e A263563 | 11 | 11 | 011 | %e A263563 | 12 | 110 | 110 | %e A263563 | 13 | 100 | 100 | %e A263563 | 14 | 12 | 0012 | %e A263563 | 15 | 120 | 0120 | %e A263563 | 16 | 1200 | 1200 | %e A263563 | 17 | 20 | 200 | %e A263563 | 18 | 13 | 0013 | %e A263563 | 19 | 130 | 0130 | %e A263563 | 20 | 1300 | 1300 | %e A263563 | 21 | 30 | 300 | %e A263563 | 22 | 14 | 0014 | %e A263563 | 23 | 140 | 0140 | %e A263563 | 24 | 1400 | 1400 | %e A263563 | 25 | 40 | 400 | %e A263563 | 26 | 15 | 0015 | %e A263563 | 27 | 150 | 0150 | %e A263563 | 28 | 1500 | 1500 | %e A263563 | 29 | 50 | 500 | %e A263563 | 30 | 16 | 0016 | %e A263563 +----+--------+-----------------------------------+ %e A263563 Comments from _N. J. A. Sloane_, Jan 18 2016 (Start): After a(9)=9, the smallest possible choice for a(10) is the first number that has not yet appeared, which is 10. There is no contradiction, so we take a(10)=10. %e A263563 Now the smallest number that has not yet appeared is 11, and we can achieve a(11)=11 by making the string of digits starting at the 11th place read 011. %e A263563 Now the string of digits starting at the 12th pace is 11..., and the smallest candidate of that form is 110, which gives a(12)=110. %e A263563 And so on. (End) %o A263563 (Perl) See Links section. %Y A263563 Cf. A263443, A263564. %K A263563 nonn,base,look,nice %O A263563 1,2 %A A263563 _Paul Tek_, Oct 21 2015