This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A263576 #23 Feb 16 2025 08:33:27 %S A263576 0,1,2,6,23,101,490,2597,14926,92335,610503,4288517,31848677, %T A263576 249044068,2043448968,17540957166,157108128963,1464813176354, %U A263576 14187155168782,142469605397465,1480903718595721,15908940627242898,176382950500197589,2015650339677868116 %N A263576 Stirling transform of Fibonacci numbers (A000045). %H A263576 Alois P. Heinz, <a href="/A263576/b263576.txt">Table of n, a(n) for n = 0..564</a> %H A263576 Eric Weisstein's MathWorld, <a href="https://mathworld.wolfram.com/FibonacciNumber.html">Fibonacci Number</a>. %H A263576 Eric Weisstein's MathWorld, <a href="https://mathworld.wolfram.com/StirlingTransform.html">Stirling Transform</a>. %H A263576 Eric Weisstein's MathWorld, <a href="https://mathworld.wolfram.com/BellPolynomial.html">Bell Polynomial</a>. %F A263576 a(n) = Sum_{k=0..n} A000045(k)*Stirling2(n,k). %F A263576 Sum_{k=0..n} a(k)*Stirling1(n,k) = A000045(n). %F A263576 Let phi=(1+sqrt(5))/2. %F A263576 a(n) = (B_n(phi)-B_n(1-phi))/sqrt(5), where B_n(x) is n-th Bell polynomial. %F A263576 2*B_n(phi) = A263575(n) + a(n)*sqrt(5). %F A263576 E.g.f.: (exp((exp(x)-1)*phi)-exp((exp(x)-1)*(1-phi)))/sqrt(5). %F A263576 G.f.: Sum_{j>=1} Fibonacci(j)*x^j / Product_{k=1..j} (1 - k*x). - _Ilya Gutkovskiy_, Apr 06 2019 %p A263576 b:= proc(n, m) option remember; `if`(n=0, (<<0|1>, %p A263576 <1|1>>^m)[1, 2], m*b(n-1, m)+b(n-1, m+1)) %p A263576 end: %p A263576 a:= n-> b(n, 0): %p A263576 seq(a(n), n=0..23); # _Alois P. Heinz_, Aug 03 2021 %t A263576 Table[Sum[Fibonacci[k] StirlingS2[n, k], {k, 0, n}], {n, 0, 23}] %t A263576 Table[Simplify[(BellB[n, GoldenRatio] - BellB[n, 1 - GoldenRatio])/Sqrt[5]], {n, 0, 23}] %Y A263576 Cf. A000045, A263575. %K A263576 nonn %O A263576 0,3 %A A263576 _Vladimir Reshetnikov_, Oct 21 2015