A263592 Number of length n arrays of permutations of 0..n-1 with each element moved by -3 to 3 places and the median of every three consecutive elements nondecreasing.
1, 2, 6, 16, 41, 108, 280, 729, 1908, 4969, 12950, 33796, 88112, 229740, 599191, 1562470, 4074372, 10625188, 27707446, 72253034, 188417568, 491341657, 1281284446, 3341248089, 8713071846, 22721332009, 59251115518, 154510913809
Offset: 1
Keywords
Examples
Some solutions for n=6: ..2....1....0....1....3....0....1....1....1....0....0....2....0....1....0....0 ..0....0....1....0....1....1....0....0....0....1....3....0....4....0....1....1 ..3....2....5....4....0....3....3....5....2....2....2....4....1....3....2....2 ..5....3....2....3....5....5....5....2....4....4....1....3....2....5....4....5 ..1....4....3....2....4....4....4....3....5....5....4....1....3....2....3....4 ..4....5....4....5....2....2....2....4....3....3....5....5....5....4....5....3
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Column 3 of A263597.
Formula
Empirical: a(n) = a(n-1) + a(n-2) + 7*a(n-3) + 2*a(n-4) + 4*a(n-5) - a(n-7) - a(n-8).
Empirical g.f.: x*(1 + x + 3*x^2 + x^3 + 3*x^4 + x^5 - x^6 - x^7) / (1 - x - x^2 - 7*x^3 - 2*x^4 - 4*x^5 + x^7 + x^8). - Colin Barker, Jan 02 2019