A263597 T(n,k)=Number of length n arrays of permutations of 0..n-1 with each element moved by -k to k places and the median of every three consecutive elements nondecreasing.
1, 1, 2, 1, 2, 3, 1, 2, 6, 5, 1, 2, 6, 12, 8, 1, 2, 6, 16, 25, 13, 1, 2, 6, 16, 41, 57, 21, 1, 2, 6, 16, 52, 108, 124, 34, 1, 2, 6, 16, 52, 164, 280, 268, 55, 1, 2, 6, 16, 52, 208, 476, 729, 588, 89, 1, 2, 6, 16, 52, 208, 676, 1428, 1908, 1285, 144, 1, 2, 6, 16, 52, 208, 800, 2208, 4308
Offset: 1
Examples
Some solutions for n=6 k=4 ..1....1....1....0....2....0....0....0....1....4....3....2....1....4....0....2 ..2....2....0....1....1....5....3....1....5....1....1....0....4....0....1....0 ..3....3....2....3....5....2....2....2....0....0....0....1....0....1....3....1 ..0....0....4....4....3....3....1....5....2....2....2....5....3....3....5....3 ..4....5....3....2....0....4....4....3....4....3....4....3....5....2....2....4 ..5....4....5....5....4....1....5....4....3....5....5....4....2....5....4....5
Links
- R. H. Hardin, Table of n, a(n) for n = 1..516
Formula
Empirical for column k:
k=1: a(n) = a(n-1) +a(n-2)
k=2: a(n) = a(n-1) +a(n-2) +3*a(n-3) +a(n-4)
k=3: a(n) = a(n-1) +a(n-2) +7*a(n-3) +2*a(n-4) +4*a(n-5) -a(n-7) -a(n-8)
k=4: [order 15]
k=5: [order 31]
k=6: [order 67]
Comments